期刊文献+

复合阴极Ag/LiF/Al对P3HT:PCBM太阳能电池性能的影响

Influence of Composite Cathode of Ag/LiF/Al on the Performance of P3HT∶PCBM Solar Cells
下载PDF
导出
摘要 在P3HT∶PCBM聚合物太阳能电池的阴极LiF/Al中引入纳米结构的银膜组成Ag/LiF/Al复合阴极,太阳能电池的光电流能显著提高。在AM1.5G和100mW.cm-2的模拟太阳光照射下,当银膜厚度为4纳米时,优化的太阳能电池的光电流要比只有LiF/Al的参比太阳能电池高20%以上。研究表明,纳米银膜产生的表面等离子体效应是增强聚合物太阳能电池光电池的主要原因。不过,银膜修饰的太阳能电池填充因子和开路电压要比参考电池低,最终使该类型电池效率降低。在银膜处增加的载流子复合可能是导致电池填充因子、开路电压和能量转化效率降低的重要原因。 The improved photocurrent of regioregular poly(3-hexylthiophene) (P3HT) and 6,6-phenyl C61-butyric acid methyl- ester (PCBM) based polymer solar cells (PSCs) using LiF and A1 cathode, modified with a reasonable thin Ag layer, was dem- onstrated. Using an optimal 4rim Ag layer-modified electrode gave 20G improved short-circuit photocurrent density over PSCs with only LiF/A1 cathode under AM1.5G illumination of 100 mW · cm 2 The increased short-circuit photocurrent density is as- cribed to plasmon enhancement of the polymer absorption by nanotextured Ag film. The fill factor and open voltage of PSCs using Ag/LiF/A1 cathode are decreased compared with the control PSCs with only LiF/A1 cathode, which result in the decrease in power conversion efficiency of PSCs modified with Ag film. The possible reason for the deteriorated performance of PSCs with Ag/LiF/A1 is stronger carrier recombination at nanotextured Ag.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第7期1865-1868,共4页 Spectroscopy and Spectral Analysis
基金 上海市教育委员会重点学科建设项目(J51303) 国家自然科学基金项目(60978060) 教育部博士点基金项目(20110076120017) 上海市自然科学基金项目(11ZR1411300) 上海市浦江人才基金项目(11PJ1402700)资助
关键词 聚合物太阳能电池 P3HT∶PCBM薄膜 表面等离子体效应 纳米结构银膜 Polymer solar cells P3HT :PCBM film Surface plasmon Nanotextured Ag film
  • 相关文献

参考文献22

  • 1Krebs F C. Solar Energy Materials and Solar Ceils, 2009, 93(4) : 394.
  • 2Mayer A C, Scully S R, Hardin B E, et ah Materials Today, 2007, 10(11): 28.
  • 3Dennler G, Scharber M C, Brabee C J. Advanced Materials, 2009, 21(13) : 1323.
  • 4周建萍,陈晓红,徐征.P3HT∶PCBM薄膜成膜过程对聚合物太阳能电池性能的影响[J].光谱学与光谱分析,2011,31(10):2684-2687. 被引量:6
  • 5Li G, Shrotriya V, Huang J, et al. Nature Materials, 2005, 4(11): 864.
  • 6Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Nature Materials, 2008, 7(2): 158.
  • 7Chen H Y, Hou J, Zhang S, et al. Nature Photonies, 2009, 3(11): 649.
  • 8Park S H, Roy A, Beaupr S, et al. Nature Photonics, 2009, 3(5): 297.
  • 9Chen F C, Wu J L, Lee C L, et al. Applied Physics Letters, 2009, 95: 013305.
  • 10Taton T A, Mirkin C A, Letsinger R L. Science, 2000, 289(5485) : 1757.

二级参考文献14

  • 1Krebs F C. Solar Energy Materials and Solar Cells,2009, 93(4): 394.
  • 2Dennler G, Scharber M C, Brabec C J. Advanced Materials,2009, 21(13): 1323.
  • 3Topp K, Borchert H, Johnen F, et al. J. Phys. Chem. A, 2010, 114(11): 3981.
  • 4Chen H Y, Hou J, Zhang S, et al. Nature Photonics,2009, 3(11): 649.
  • 5Chen X, Zhao C, Rothberg L, et al. Applied Physics Letters,2008, 93: 123302.
  • 6Gunes S, Neugebauer H, Sariciftci N S. Chem. Rev., 2007, 107(4): 1324.
  • 7Park S H, Roy A, Beaupr S, et al. Nature Photonics,2009, 3(5): 297.
  • 8Chen X, Yang J, Haley L Y X C, et al. Organic Electronics,2010, 11(12): 1942.
  • 9Li G, Shrotriya V, Huang J, et al. Nature Materials,2005, 4(11): 864.
  • 10Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Nature Materials,2008, 7(2): 158.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部