期刊文献+

基于小波分析的Bessel声场预处理 被引量:1

Bessel field pre-treatment based on wavelet analysis
下载PDF
导出
摘要 采用Fourier-Bessel方法对环型换能器的声场进行数值计算,并对仿真声场进行了深入讨论.通过对换能器轴向声压分布的分析,针对声近场明显的扰动,提出一种新的方法对声场进行预处理,即利用小波多分辨率分析降噪,去除近场杂频率成分,提高声压幅度.研究结果表明,小波分析技术能提高Bessel声场的基波成像质量,对于小波变换在Bessel超声成像中的应用提供了很好的依据. The simulated sound field of an annular ultrasound transducer is given based on Fourier-Bessel series method.After analyzing the axial acoustic pressure,especially the near-field disturbance,wavelet multi-resolution analysis of the noise reduction is carried out for removing the near-field complex frequency components and increasing the sound pressure amplitude.The results show that the wavelet analysis technique can be used for improving the fundamental ultrasound imaging quality of Bessel field.
作者 李琴 谭冠政
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2012年第4期524-528,共5页 Journal of the Graduate School of the Chinese Academy of Sciences
关键词 FOURIER-BESSEL 小波分析 自适应降噪 Foursier-Bessel wavelet analysis adaptive denoising
  • 相关文献

参考文献7

  • 1Durnin J. Exact soulutions for nondiffracting beam. I. The scalar theory[ J]. Journal of the Optical Society of America A, 1987, 4 (4) : 651-654.
  • 2Jian Y L, Greenleaf J F. Ultrasonic nondiffracting transducer for medical imaging[ J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 1990, 37 (5) :438-447.
  • 3Fox P D, Cheng J Q, Lu J Y. Fourier-Bessel field calculation and tuning of a CW annular array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49 (9) : 1179-1190.
  • 4杜宏伟,彭虎,江朝晖,陈香,韩雪梅,冯焕清.Bessel波二次谐波声场的仿真研究[J].哈尔滨工业大学学报,2009,41(3):108-112. 被引量:1
  • 5Zhong J M, Sun H F. Wavelet-based multiscale anisotropic diffusion with adaptive statistical analysis for image restoration [ J ]. IEEE Transactions on Circuits and Systems l, 2008, 55 (9) :2716-2725.
  • 6Tang Q X, Jiao L C. Image denoising with geometrical thresholds[ J]. Electronics Letters, 2009, 45 (8) :405-406.
  • 7王萍,郭翠双,陶陈彬,张敬海.基于空域相关的优化阈值函数滤波算法及其虚拟实现[J].天津大学学报,2009,42(6):476-482. 被引量:1

二级参考文献16

  • 1DURMIN J. Exact solutions for nondiffract-ing beams. I. The scalar theory [J]. J Opt Soc Amer, 1987, 4 (4) : 651 -654.
  • 2LU Jian-yu. Designing limited diffraction beams [ J]. IEEE Trans Ultrason Ferro-elect Freq Contr, 1997, 44 (1): 181-193.
  • 3FOX P D, HOLM S. Modeling of CW annular arrays using limited diffract-tion Bessel beams [ J ]. IEEE Trans Ultrason Ferroelect Freq Contr, 2002, 49 ( 1 ) : 85 - 93.
  • 4FOX P D, CHENG Jiqi, LU Jian-yu. Fourier Bessel field calculation and turning of a CW annular array [ J ]. IEEE Trans Ultrason Ferroelect Freq Contr, 2002, 49(9) : 1179 -1190.
  • 5BURNS P N, SIMPSON D H. Nonlinear imaging [ J ]. Ultrasound in Med & Biol, 2000, 26( 1 ) :19 -22.
  • 6AANONSEN S I, NAZE TJOTTA J, TJOTTA S. Distortion and harmonic generation in the nearfield of a finite amplitude sound beam [ J ]. J Acoust Soc Am, 1984, 75 (3) : 749 - 768.
  • 7LI Yadong, ZAGZEBSKI J A. Computer model for harmonic ultrasound imaging [ J ]. IEEE Trans Ultrason Ferroelect Freq Contr, 2000, 47(4) : 1000 -1013.
  • 8LEE Y S, HAMILTON M F. Time-domain modeling of pulsed finite-amplitude sound beams [ J ]. J Acoust Soc Amer, 1995, 97(2) : 906 -917.
  • 9DING De-sheng, LU Zu-hong. The second harmonic component in the Bessel beam [ J ]. Appl Phys Lett, 1996, 68(5) : 608 -610.
  • 10Zhang Lei,Bao Paul. Denoising by spatial correlation thresholding [J].IEEE Transactions on Circuits and Systems for Video Technology,2003,13 (6) :535-538.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部