期刊文献+

周期序列的k错线性复杂度的期望值(英文) 被引量:1

Expected value of k-error linear complexity of periodic sequences
下载PDF
导出
摘要 有限域Fq上一个周期序列的k错线性复杂度被定义为通过改变每个周期至多k个比特所得到的最小线性复杂度.给出有限域Fq上pn周期序列的k错线性复杂度的期望,其中p是一个奇素数,q是模p2的原根,并且1≤k≤(p-1)/2. The k-error linear complexity of a periodic sequence over a finite field Fq is defined to be the smallest linear complexity that can be obtained by changing k or fewer bits per period. We explicitly give the expected value of k-error linear complexity of p^n-periodic sequences over Fq, where p is an odd prime, q is a prime primitive root modulo p^2, and 1≤k≤ (p -1 )/2.
作者 吴成文 岳勤
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2012年第4期564-570,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 Supported by NNSF of China(11171150,10971250)
关键词 线性复杂度 K错线性复杂度 期望值 linear complexity k-error linear complexity expected value
  • 相关文献

参考文献9

  • 1Ding C, Xiao G, Shan W. The stability theory of stream ciphers[ C]//Lecture Notes in Computer Science. Springer-Verlag, 1991, 561.
  • 2Meidl W, Niederreiter H. On the expected value of the linear complexity and the k-error linear complexity of periodic sequences [ J ] IEEE Trans Inf Theory, 2002, 48( 11 ): 2817-2825.
  • 3Games R A, Chan A H. A fast algorithm for determining the complexity of a binary sequences with period 2^n [ J]. IEEE Trans Inform Theory, 1983, 29 : 144-146.
  • 4Stamp M, Martin C F. An algorithm for the k-error linear complexity of binary sequences of period 2^n[ J]. IEEE Trans Inform Theory, 1993, 39: 1398-1401.
  • 5Weidl W. On the stability of 2n-periodic binary sequences [ J ]. IEEE Trans Inform Theory, 2005, 51 (3) : 1151-1155.
  • 6Xiao G, Wei S, Lain K Y, et al. A fast algorithm for determining the linear complexity of a sequence with p^n over GF(q) [ J]. IEEE Trans Inf Theory, 2000, 46 : 2203-2206.
  • 7Chen H. Reducing the computation of linear complexities of periodic sequences over GF(p^m) [ J]. IEEE Trans Inf Theory, 2006, 52:5537- 5539.
  • 8Han Y K, Chung J H, Yang K. On the k-error linear compexity of p^m-periodic binary sequences[ J]. IEEE Trans Inf Theory, 2007, 53 (6) : 2297-2304.
  • 9Rosen K H. Elementary number theory and its applications[ M ]. Addison-Wesley, Reading, MA, 1988.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部