期刊文献+

基于优选级评定的能量设计因子耦合分解机制 被引量:2

Decoupling Mechanism of EDF Based on Design Priority Evaluation
下载PDF
导出
摘要 能量设计因子作为产品设计信息与能量特性的联系桥梁,一般与众多设计元素存在耦合关系,难以直接转换成设计过程需要的设计参数或控制措施,针对此问题,建立了能量设计因子耦合分解机制。耦合分解机制的主体由耦合性质分析、耦合元素关系矩阵构造、耦合元素设计优先级评定、能量设计参数与取值建议(或控制措施与控制目标)获取四个核心环节构成。以数控机床的耦合能量设计因子极限切削宽度bDlim为例,对耦合分解机制进行了说明。 The EDF connecting the product's design information and its energy characteristics was difficult to convert to design parameters and control measures, which was coupled with large amount of design elements. Aiming to solve this problem, the decoupling mechanism of EDF was built. The deeoupling mechanism was constituted by analyzing coupling characteristics, constructing coupling ele- ment relation matrix(CERM) ,evaluating design priority of coupled element and gaining energy design parameters and optimum value(or control measures and target). In addition,the max cut width bDum of NC machines was selected as an illustrative example to show the decoupling mechanism of EDF.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第12期1393-1399,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50775061) 安徽省教育厅自然科学基金资助项目(KJ2011B050)
关键词 能量设计因子 能量优化设计 耦合分解 模糊层次分析法 energy design factor(EDF) optimization design for energy decoupling fuzzy analytic hierarchy process
  • 相关文献

参考文献13

  • 1Thomas V,Caudill R,Badwe D. Marginal Emissions and Variation across Models: Life- cycle Assess-ment of a Television[C]//Proeeedings of the 1998 IEEE International Symposium on Elctronies and the Environment. Oak Brook, IL, USA: ISEE, 1998:48-53.
  • 2Kim Hyung Chul. Optimal Household Refrigerator Replacement Policy for Life Cycle Energy, Green- house Gas Emissions and Cost[J]. Energy Policy, 2006,34 : 2310-2323.
  • 3Masanet E, Horvath A. Enterprise Strategies for Reducing the Life--cycle Energy Use and Green- house Gas Emissions of Personal Computers[C]// Proceedings of the 2006 IEEE International Sympo- sium on Eletronics and the Environment. Scotts- dale, AZ, USA : ISEE, 2006 : 21-26.
  • 4戚赞徽.面向能源节约的产品绿色设计理论与方法研究[D].合肥:合肥工业大学,2006.
  • 5周丹,刘光复,何平.数控机床能量设计因子提取方法研究[J].中国机械工程,2011,22(3):351-355. 被引量:9
  • 6Steward D V. The Design Structure System:a Meth- od for Managing the Design of Complex Systems [J]. IEEE Transaction on Engineering Manage- ment, 1981,28(3) : 71-74.
  • 7Gebala D A, Eppinger S D. Methods for Analyzing Design Procedures[J]. ASME Design Theory and Methodology, 1991,31 : 227-233.
  • 8Browning T R,Eppinger S D. Modeling Impacts of Process Architecture on Cost and Schedule Risk in Product Development[J]. IEEE Transactions on En- gineering Management, 2002,49 (4) : 428-442.
  • 9朱松岭,周平,韩毅,杨海成.基于模糊层次分析法的风险量化研究[J].计算机集成制造系统,2004,10(8):980-984. 被引量:81
  • 10徐泽水.三角模糊数互补判断矩阵的一种排序方法[J].模糊系统与数学,2002,16(1):47-50. 被引量:163

二级参考文献34

  • 1陈守煜.多目标系统模糊关系优选决策理论与应用[J].水利学报,1994,26(8):62-66. 被引量:60
  • 2凯西·施瓦尔贝 王金玉.IT项目管理[M].北京:机械工业出版社,2001..
  • 3Srinivasan M, Sheng P. Feature Based Process Planning for Environmentally Conscious Machining- Part 1: Microplanning[J]. Robotics and Computer Integrated Manufacturing, 1999,15 : 257-270.
  • 4Srinivasan M,Sheng P. Feature Based Process Planning for Environmentally Conscious Machining- Part 2.. MacroPlanning[J]. Robotics and Computer Integrated Manufacturing, 1999, 15: 271-281.
  • 5Sheng P, Srinivasan M. Multi--objective Process Planning in Environmentally Conscious Manufacturing[J]. A Feature--based Approach. Annals of the CIRP, 1995,44(1):433-437.
  • 6Munoz A A, Sheng P. An Analytical Approach for Determining the Environmental Impact of Machining Proeesses[J]. Journal of Materials Processing Technology, 1995,53:736-758.
  • 7Gutowski T, Murphy C, Allen D, et al. Environ- mentally Benign Manufacturing:Observations from Japan, Europe and the United States[J]. Journal of Cleaner Production, 2005,13 ( 1 ) :1-17.
  • 8戴曙.金属切削机床[M].北京:机械工业出版社,1993.
  • 9杨槁.机床动力学[M].北京:机械工业出版社,1983.
  • 10徐泽水.FUZZY环境中群组AHP决策新方法研究[J].曲阜师范大学学报,1997,23:1-2.

共引文献363

同被引文献17

  • 1FITCH P E, COOPER J S. Life cycle energy analysis as a method for material selection[J]. Transactions of the ASME, 2004, 126: 798-804.
  • 2THOMAS V, CAUDILL R, BADWE D. Marginal emissions and variation across models: Life-cycle assessment of a television[C]//Proceedings of the 1998 IEEE International Symposium on Electronics and the Environment, Oak Brook, IL. USA.. ISEE, 1998: 48-53.
  • 3MASJUKI H H, SAIDUR R, CHOUDHURY I A, et al. Factors effecting energy consumption of household refrigerator- freezers[C]//IEEE Region 10 Annual International Conference, Kuala Lumpur. Malaysia: TENCON Proceedings, 2000: 92-96.
  • 4ISFAHANI A H, LEANI H, EBARHIMI B M. Design optimization of linear induction motor for improved efficiency and power factor[C]//Proceedings of IEEE International Electric Machines and Drives Conference, Antalya. Turkey: IEMDC 2007: 988-991.
  • 5UMEDA Y. Supporting conceptual design based on FBS modeler[J]. AI for Engineering Design, Analysis and Manufacturing, 1996, 10(4): 275-288.
  • 6SUH N P. Axiomatic design: Advance and applications [M]. New York: Oxford University Press, 2001.
  • 7ZHOU D, LIU G F, HE P. Approach to energy optimization axiomatic design based on design unite[C]// 2011 3rd International Conference on Mechanical and Electronics Engineering, Hefei. 2011: 1582-1585.
  • 8GUTOWSKI T, DAHMUS J, THIRIEZ A. Electrical energy requirements for manufacturing process[C]//13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, May 31-June 2, 2006. 2006: 5-11.
  • 9MUNOZ A A, SHENG E An analytical approach for determining the environmental impact of machining processes[J]. Journal of Materials Processing Technology, 1995, 53: 736-758.
  • 10周丹.基于设计元与公理设计理论的能量优化设计方法研究[D].合肥:合肥工业大学,2012.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部