期刊文献+

Pb_nSn(n=1~19)合金团簇的结构稳定性及其半导体—金属性转变 被引量:3

Structural stability and semiconductor-metal transition in Pb_nSn(n=1~19) alloy clusters
下载PDF
导出
摘要 基于密度泛函理论(DFT),采用广义梯度近似(GGA)计算了Pb_nSn(n=1~19)合金团簇的结构演化、结合能和电子结构.结果表明Sn原子的掺杂增强了Pb_n团簇的稳定性,其碎裂行为也很好地符合了已有的实验结果.随着Pb_nSn合金团簇尺寸的增加,其几何结构由类似于密堆积构型向松散构型演化,具体的转变尺寸为总原子数N=14.Pb_nSn团簇的HOMO-LUMO能隙呈现出先增加后降低的趋势,在6原子时达到最大值1.6 eV,表现出显著的半导体性质和尺寸依赖.当N≥7时,能隙振荡减小,呈现出微弱的半导体性向金属性的转变行为. The evolution of the equilibrium geometry, binding energy and electronic structure of Pb.Sn (n=l-19) alloy clusters have been calculated by using first-principles calculations based on density functional theory (DFT). The stability of Pb. clusters is enhanced by adding single Sn atom to Pb. clus- ters and the theoretical fragmentation behavior gives a well explanation for previous results. As the total atom number N=14 the occurrence of structural transformation from close packed to the layer is detec- ted. The calculated HOMO-LUMO energy gaps tend to firstly increase then decrease, and reach to the maximal value of 1.6 eV as N=6, which presents prominent semiconductor behavior and dependence of the cluster size. As N≥7 the Gap suffers an oscillatory reduction and behaves weak transformation from semiconductor to metallicity.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2012年第3期445-450,共6页 Journal of Atomic and Molecular Physics
基金 贵州省教育厅自然科学类资助项目(黔教高发[2009]331号) 遵义市科技研发资金(遵市科合社字[2010]08号)
关键词 合金团簇 结构稳定性 金属性 密度泛函理论(DFT) alloy-cluster, stability, metallicity, density functional theory (DFT)
  • 相关文献

参考文献3

二级参考文献42

共引文献8

同被引文献51

  • 1Helden G V, Hsu M T, Bowers M T. Carbon clus- ter cations with up to 84 atoms., structures, forma- tion mechanism, and reactivity [J]. J. Phys. Chem. , 1993,97: 8182.
  • 2Tomdnek D, Schluter M A. Growth regimes of car- bon clusters [J]. Phys. Rev. Lett., 1991, 67: 2331.
  • 3JarroldM F, Constant V A. Silicon cluster ions: evi- dence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994.
  • 4Jarrold M F, Bower J E. Mobilities of silicon cluster ions. the reactivity of silicon sausages and spheres[J]. J. Chem. Phys., 1992, 96: 9180.
  • 5Hunter J M, Fye J L, Bower J E. Structural transi- tions in size-selected germanium cluster ions [J]. Phys. Rev. Lett., 1994,73: 2063.
  • 6Raghavachari K, Rohlfing C M. Bonding and stabili-ties of small silicon clusters, a theoretical study of SiT - Si10[J]. J. Chem. Phys. , 1988, 89: 2219.
  • 7Rohlfing C M, Raghavachari K. A theoretical study of small silicon clusters using an effective core poten- tial [J]. Chem. Phys. Lett. , 1990, 167. 559.
  • 8Raghavachari K, Rohlfing C M. of the negative ions Si2^- -Sii10: Electronic structures electron affinities of small silicon clusters [J]. J. Chem. Phys. , 1991, 94 : 3670.
  • 9Liu B, Shvartsburg A A, Jarrold M F, et al. Ioniza- tion of medium-sized silicon clusters and the geome- tries of the cations [J]. J. Chem. Phys., 1998, 109: 9401.
  • 10Shvartsburg A A, Jarrold M F. Tin clusters adopt prolate geometries [J]. Phys. Rev. A, 1999, 60: 1235.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部