期刊文献+

单壁碳纳米管储氢的第一原理分子动力学模拟 被引量:3

Theoretical study of hydrogen adsorption in single-walled carbon nanotubes by first principles molecular dynamics method
下载PDF
导出
摘要 本文用第一性原理平面波赝势方法模拟研究了手性单壁碳纳米管与氢分子的相互作用,考察了碳纳米管直径对储氢性能的影响.对单壁碳纳米管储氢的模拟结果表明:(1)物理吸附时,H_2可以吸附在空腔内,也可以吸附在管与管之间的空隙中,纳米管内部的氢吸附力均高于管外,而"完好无损"的H_2分子不能够穿过管壁而进入管内.(2)化学吸附时,碳纳米管对氢的吸附首先出现在管的边缘附近,碳纳米管局部会发生形变,SWCNTs的张力会随C—H键的增加而增大,系统不稳定.(3)随着直径的增加,纳米管内、外的氢吸附力差异减小. Adsorption of hydrogen molecules in finite was presented using the first-principles plane-wave method. The hydrogen storages of different diameter hydrogen storage in SWCNTs show that: (1) When chiral single-walled carbon nanotubes (SWCNTs) pseudopotential molecular dynamics simulations nanotubes were studied. The simulation results of the physisorption happens, the H2 can adsorb in both the cavity of tube and the crevice between tubes. The hydrogen adsorption energy of SWCNTs in- ner is all higher than that outside of the tube, but the intact H2 molecules canrt go through the tube wall and enter tube inner. (2) When the chemisorption happens, the hydrogen adsorption first appears at the edge of SWCNTs. C atoms bonded with H atoms result in the structural deformation in parts of tube wall and tension of SWCNTs would aggrandize with the increment of the C--H bonds, so the system is unsteady. (3) Along with the increment of the diameter, the difference of hydrogen adsorption capabili- ty between the inside and outside of each SWCNT drops off.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2012年第3期488-492,共5页 Journal of Atomic and Molecular Physics
基金 中物院科学技术发展基金重点课题(2009A0302020)
关键词 单壁碳纳米管 储氢 物理吸附 化学吸附 第一性原理分子动力学 single-walled carbon nanotube, hydrogen storage, physisorption, chemisorption, first princi-ples molecular dynamics
  • 相关文献

参考文献18

  • 1Lee S M, Lee Y H. Hydrogen storage in single- walled carbon nanotubes [ J]. Appl. Phys. Lett. , 2000,76(20) : 2877.
  • 2Lee S M, An K H, Lee Y H, etal. A hydrogen storage mechanism in single-walled carbon nanotubes [J]. J. Am. Chem. Soc. , 2001,123 (21): 5059.
  • 3Dillon A C, Jones K M, Bekkedahl T A, et al. Stor- age of hydrogen in single-walled carbon nanotbue [J]. Nature, 1997, 386: 377.
  • 4Ye Y,Ahn C C,Witham C,et al. Hydrogen adsorp- tion and cohesive energy of single-walled carbon nanotubes[J]. Appl. Phys. Lett., 1999,74(16): 2307.
  • 5Yun Xia Yang. Ranjeet K. Singh. Paul A. Webley. Hydrogen adsorption in transition metal carbon nano-structures [J]. Adsorption, 2008, (14) : 265.
  • 6Chen P,Wu X,LinJ,etal. High H2 uptake by alkali- doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science,1999, 285:91.
  • 7Dag S, Senger R T, Ciraeil S. Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures [J]. Phys. Rev. B, 2004, 70: 205407.
  • 8Georgakis M, Stavropoulos G, Sakellaropoulos G P. Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups [J]. International Journal of Hydrogen Energy, 2007, 32:1999.
  • 9Cheng J R, Ding R, Liu Y, et al. Computer simula- tion of hydrogen physisorption in single-walled boron nitride nanotube arrays [J]. Computational Materi- als Science, 2007,40:34.
  • 10程锦荣,袁兴红.相互作用势对模拟计算单壁碳纳米管物理吸附储氢的影响[J].原子与分子物理学报,2005,22(2):289-298. 被引量:12

二级参考文献57

  • 1沈海军,穆先才,陈裕,付光炬.C_(60)、C_(240)、C_(60)@C_(240)富勒烯分子压缩特性的分子动力学研究[J].原子与分子物理学报,2006,23(5):850-854. 被引量:6
  • 2沈海军,穆先才.“Y”形、竹节形与直纳米碳管拉伸力学特性的有限元分析[J].材料科学与工程学报,2005,23(3):321-324. 被引量:13
  • 3DWHeermann 秦克诚译.理论物理学中的计算机模拟方法[M].北京大学出版社,1996..
  • 4Liu C,Science,1999年,286卷,1127页
  • 5Cheng H M,Appl Phys Lett,1998年,72卷,3282页
  • 6Cheng H M,Chem Phys Lett,1998年,289期,602页
  • 7Liu C,Carbon,1999年,37卷,1865页
  • 8Chen P,Science,1999年,285期,91页
  • 9Dodziuk H, Dolgonos G. Molecular modeling study of hydrogen storage in carbon nanotubes[J]. Chem. Phys. Lett., 2002, 356: 79~83.
  • 10Liu C, Yang Q H, Tong Y, et al. Volumetic hydrogen storage in single-walled carbon nanotubes[J]. Appl. Phys. Lett., 2002, 80: 2389~91.

共引文献33

同被引文献36

  • 1Kroto H W,Heath J R.O'Brien S C.C60:Buckminsterfullerene[J].Nature,1985,318 (14):162.
  • 2Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354 (6348):56.
  • 3Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306 (5696):666.
  • 4Baughman R H,Eckhardt H,Kertesz M.Structureproperty predictions for new planar forms of carbon:Layered phases containing sp and sp atoms[J].J.Chem.Phys.,1987,87 (17):6687.
  • 5Kang J,Li J B,Wu F M,et al.Elastic.Electronic and optical properpties of two-dimensional graphyne sheet[J].J.Phys.Chem.C,2011,115 (42):20466.
  • 6Pan L D,Zhang L Z,Song B Q,et al.Graphyne-and graphdiyne-based nanoribbons:Density functional theory calculations of electronic structures[J].Appl.Phys.Lett.,2011,98 (17):173102.
  • 7Narita N,Nagai S,Suzuki S,etal.Electronic structure of three_dimensional graphyne[J].Phys.Rev.B,2000,62 (16):11146.
  • 8Toker C,Filippetti A,Sanvito S.Errors in Density Functional Calculations of Electronic Transportion[J].Phys.Rev.Lett.,2005,95 (14):146402.
  • 9Blochl P E.Projector augmented-wave method[J].Phys.Rev.B,1994,50 (24):17953.
  • 10Kresse G,Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys.Rev.B,1999,59 (3):1758.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部