期刊文献+

网络汇聚点传输层拓扑的流量识别

Traffic identification based on transport-layer topology at network aggregation point
下载PDF
导出
摘要 针对利用数据流统计特性的网络流量分类算法复杂及实时性差的问题,提出一种基于传输层拓扑的网络流量识别方法,根据应用类型在汇聚节点表现出不同的主机连接拓扑结构,提取应用类型的拓扑特征,结合深度包检测(DPI)技术生成应用类型库,并基于该库和启发式准则实现典型应用类型的快速识别和分类。实验结果表明,所提方法对各主要应用类型的识别精确度均高于85%,并将未识别流比例从深度包检测技术的18%降低到7%,有效利用了不同应用类型的连接拓扑信息,能提高应用类型的识别准确度。 Considering the complexity and poor real-time quality of classification algorithms based on the statistical characteristics of network traffic,a new traffic identification method was proposed based on transport-layer topology.According to the different host connection characteristics in terms of application types at aggregation point,the proposed method extracted topological characteristics of application types by capturing the transport layer connection information,and then produced application type pools based on Deep-in Packet Inspection(DPI) technique,finally identified the application types of traffic combining the pools and heuristic rules.The experimental results show that the proposed method gains precision higher than 85% for identifying main application types and reduces ratio of un-identified flows from 18% to 7%.It utilizes transport-layer topology information of different application types and can enhance the recognition accuracy of application types.
出处 《计算机应用》 CSCD 北大核心 2012年第7期1807-1811,共5页 journal of Computer Applications
基金 国家863计划项目(2008AA01Z218)
关键词 流量识别 传输层 拓扑结构 应用类型库 traffic identification transport layer topological structure application type pool
  • 相关文献

参考文献11

  • 1CALLADO A, KAMIENSKI C, traffic identification [ J]. IEEE C als, 2009, 11(3): 37-52.
  • 2SZABO G. A survey on lnternet Surveys and Tutori- SEN S, SPATSCHECK O, WANG D. Accurate scalable in network identification of P2P traffic using application signatures [ C]// Pro- ceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004:512-521.
  • 3ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classi- fication and application identification using machine learning [ C]// Proceedings ot the 30th Conference on Local Compuler Networks. Piscataway: IEEE, 2005:1-8.
  • 4ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms [ C ]// Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data. New York: ACM, 2006:11 - 15.
  • 5蔡君,余顺争.基于复杂网络社团划分的网络流量分类[J].计算机科学,2011,38(3):80-82. 被引量:5
  • 6KARAGIANNIS T, PAPAGIANNAKI D, FALOUTSOS M. BLINC: Multilevel traffic classification in the dark [ J]. Computer Communi- cation Review, 2005, 35(4): 229-240.
  • 7DEWAELE G, HIMURA Y, BORGNAT P. Unsupervised host be- havior classification from connection patterns [ J]. International Jour- nal of Network Management, 2010, 20(5) : 317 -337.
  • 8WEI L, MOORE W, CANINI M. Classifying HTI'P traffic in the new age [ C ]// Conference of the Special Interest Group on Data Communication 2008. New York: ACM, 2008:479-480.
  • 9FLOYD S, PAXSON V. Difficulties in simulating the Internet [ J]. IEEE/ACM Transactions on Networking, 2001, 9(4): 392 -403.
  • 10SOULE A, LAKHINA A, TAFT N, et al. Traffic matrices: balan- cing measurements, inference and modeling [ J]. ACM SIGMET- RICS Performance Evaluation Review, 2005: 33( 1 ) : 362 - 373.

二级参考文献21

  • 1David F. P2P file sharing-The evolving distribution chain [EB/OL]. (2006). http://www.dcia. info/aetivities/p2pmswde 2006/ferguson. pdf.
  • 2Greenberg A, Hjalmtysson G, Maltz A, et al. A clean slate 4D approach to network control and management [J]. ACM SIGCOMM Computer Communication Review, 2005, 35(5) : 41 -54.
  • 3Ripeanu M, Foster I, Iamnitchi A. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design [J]. IEEE Internet Computing Journal, 2002, 6(1) : 50 - 57.
  • 4Stutzbach D, Rejaie R, Sen S. Characterizing unstructured overlay topologies in modern P2P file-sharing systems [J]. Networking, IEEE/ACM Transactions on, 2008, 16(2) 267 - 280.
  • 5Gummadi K P, Dunn R J, Saroiu S, et al. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload [J]. ACM SIGOPS Operating Systems Review, 2003, 37(5) : 314- 329.
  • 6Stutzbach D, Rejaie R. Characterizing churn in peer-to-peer networks. Technical Report, CIS-TR-2005-03 [R]. USA: University of Oregon, 2005.
  • 7Sen S,Spatscheck O, Wang Dongmei. Accurate, scalable in network identification of p2p traffic using application signature[C]// Proceedings of the 13th international conference on World Wide Web. 2004,512-521.
  • 8Haffner P, Sen S, Spatscheek O, et al. ACAS: Automated Construction of Application signatures[C]//Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data. 2005: 197 202.
  • 9Moore A, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] // ACM International Conference on Measurement and Modeling of Computer Systems (SIGMERTRICS). 2005: 50-60.
  • 10Williams N, Zander S, Armitage G. A preliminary performance comparison of five machine learning algorithmsfor practical IP traffic flow classification[J]. Special Interest Group on Data Communication Computer Communication Review, 2006: 5-15.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部