期刊文献+

基于模糊径向基神经网络和稀疏表示的毫米波图像恢复 被引量:2

Millimeter wave image restoration based on fuzzy radial basis function neural networks and sparse representation
下载PDF
导出
摘要 针对毫米波(MMW)图像包含大量未知噪声、图像分辨率较低的问题,考虑模糊径向基函数神经网络(F-RBFNN)的非线性滤波特性和基于K-奇异值分解(K-SVD)稀疏表示(SR)的自适应消噪特性,提出了一种级联消噪的毫米波图像恢复方法。F-RBFNN将模糊逻辑的知识表达和推理能力与RBFNN的快速学习能力和泛化能力结合起来,可根据实际问题调整网络结构参数,对MMW图像达到非线性滤波的目的。进一步利用K-SVD稀疏表示具有人眼视觉特性,在保持目标特征的同时可有效消噪的优点,对FRBFNN的训练结果再次进行局部图像降噪,得到分辨率较高的MMW图像。采用相对信噪比(RSNR)作为消噪图像的评价标准,实验结果表明,与F-RBFNN、K-SVD消噪、小波消噪等方法相比,基于F-RBFNN和SR的降噪方法能够获得较好的MMW图像恢复质量。 As to the problems that Millimeter Wave(MMW) image is contaminated by much unknown noise and has lower resolution,and considering the non-linear filter property of Fuzzy Radial Basis Function Neural Network(F-RBFNN) and the self-adaptive denoising property of Sparse Representation(SR) based on K-Singular Value Decomposition(K-SVD),a MMW restoration method was proposed by combining F-RBFNN and sparse representation.In F-RBFNN,the knowledge expression of fuzzy logic and the reasoning ability were combined with the RBFNN's capabilities of fast learning and generalization.In order to realize the non-linear filtering to the MMW image,F-RBFNN's structure and parameters were adjusted according to the real problem.Furthermore,utilizing the advantages of sparse representation method,which the sparse representation behaves the visual characteristic and can denoise effectively when maintaining features of the object,the training results of F-RBFNN were locally denoised once again,and the MMW image with high resolution was obtained.Using the Relative Single Noise Ratio(RSNR) criterion to measure the quality of denoised images,the simulation results show that,compared with other denoising methods such as F-RBFNN,K-SVD denoising,and wavelet denoising,the proposed method combining F-RBFNN and SR can better restore the quality of MMW image.
出处 《计算机应用》 CSCD 北大核心 2012年第7期1871-1874,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60970058) 江苏省"青蓝工程"资助项目 2010苏州市职业大学创新团队资助项目(3100125)
关键词 毫米波图像 模糊径向基神经网络 稀疏表示 非线性滤波 图像消噪 Millimeter Wave(MMW) image Fuzzy Radial Basis Function Neural Network(F-RBFNN) Sparse Representation(SR) non-linear filtering image denoising
  • 相关文献

参考文献9

二级参考文献75

  • 1于秋则,曹矩,谭毅华,田金文,柳健.基于DEM与可见光图像的机载激光成像雷达强度像仿真[J].测绘学报,2004,33(3):249-253. 被引量:5
  • 2邵君,尹忠科,王建英,张跃飞.信号稀疏分解中过完备原子库的集合划分[J].铁道学报,2006,28(1):68-71. 被引量:17
  • 3BRONO A, OSSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural image [J]. Nature, 1996,381:607-609.
  • 4DONOHO D L, XIAOMING H.. Combined image representation using edgelets and wavelets[J]. Wavelet Applications in Signal and Image Processing VII, in SPIE, 1999, 3813:468-476.
  • 5KREUTZ K, MURRAY J E Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003,15(2):349-396.
  • 6AHARON M, ELAD M,. BRUCKSTEIN A M.. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006,54(11):4311-4322.
  • 7BRYT O, ELAD M. Compression of facial images using the K-SVD algorithm[J]. Journal of Visual Communication and Image Representation, 2008,19(4):270-283.
  • 8MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008,17(1):53-69.
  • 9DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425- 455.
  • 10ROMBERG J K, CHOI H, BARANIUK R.G. Bayesian tree-structured image modeling using wavelet domain hidden markov models[J]. IEEE Transactions on Image Processing, 2001,10(7):1056-1068.

共引文献82

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部