摘要
针对串行情况下光子映射算法速度慢的问题,对光子映射算法并行化进行可行性分析,充分利用图像处理器(GPU)的统一设备计算架构(CUDA)的并行和计算能力,实现光子映射算法的并行化。同时针对算法中光子发射追踪阶段生成GPU线程数与光子数相同的方法的不足以及平均分配方法所造成的资源浪费等,提出线程之间协同工作的方法并采用动态平衡处理,使光子渲染速度提升了将近一倍。实验结果证明了多线程间协同工作及动态平衡相结合方法的有效性。
To solve the slow rendering speed issue of serial photon mapping algorithm,the feasibility of parallelizing the algorithm was analyzed.The parallelism and computing capability of the Compute Unified Device Architecture(CUDA) on Graphic Processing Unit(GPU) were fully utilized to realize a parallel photon mapping algorithm.As for the shortage of generating the same number of GPU threads as the photon number in the photon emission and tracing step,and the waste of resources of the average allocation method,a new cooperation way that all the threads be processed with dynamic balance was then proposed.The new method nearly doubled the rendering speed.The experimental results prove the effectiveness of the proposed method.
出处
《计算机应用》
CSCD
北大核心
2012年第7期1939-1942,共4页
journal of Computer Applications
基金
中央高校基本科研业务费中国民航大学专项(ZXH2009C001)
天津市应用基础及前沿技术研究计划项目(10JCYBJC00900)
国家自然科学基金资助项目(60879003)
关键词
光子映射
并行
渲染
统一设备计算架构
图像处理器
photon mapping
parallel
rendering
Compute Unified Device Architecture(CUDA)
Graphic Processing Unit(GPU)