期刊文献+

制取苯酐模型的S系统解析 被引量:1

Solution of a model of producing phthalic anhydride use the S-system method
原文传递
导出
摘要 高精度的数值法被用于求解邻二甲苯制取苯酐模型中。此方法是将基本的微分方程改写为S系统(synergisticandsaturablesystem)的标准形式,结合变阶变步长的泰勒级数法进行求解,得到了不同进料温度和不同压强下的苯酐和二氧化碳收率分布以及反应器床层的轴向温度分布曲线,并与龙格库塔法的计算结果做了对比。分析得出热点温度和苯酐及二氧化碳收率随着进料温度增大而增大,同时苯酐及二氧化碳收率也随着操作压强的增大而增大。当进料温度为638K时热点温度变的非常高,而且进料温度相差1度时热点温度会相差几十度。精确求解不同进料温度和操作压强下的热点温度对工程实际操作中催化剂的保护和设备维护有着十分重要的指导意义。 A highly accurate numerical method for solving a model of producing phthalic anhydride is presented. In this method, one first recasts fundamental equations into S-system (synergistic and saturable system) canonical form and then solves the resulting set of simultaneous first-order different equations by a variable-order, variable-step Taylor series method. The yield of phthalic anhydride and carbon dioxide and the axial temperature distribution is found at different feeding temperatures and pressures, and it is compared with the result which is computed by the Runge-Kutta method. The hot spot temperature and the yield of the phthalic anhydride and CO2 increase with the increase of the feeding temperature. Meanwhile, the yield of the phthalic anhydride and CO2 also increase with the increase of the operating pressure. The hot spot temperature becomes so high when the feeding temperature at 638 K, and it will change dozens of degrees Celsius when the feeding temperature changes one. Obtaining the exact hotspot temperature under different feed temperatures and operating pressures has a very important instructional significance for protecting the catalyst and equipment maintenance in engineering practice.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第6期679-683,共5页 Computers and Applied Chemistry
关键词 苯酐 数值解 S系统 高精度 phthalic anhydride numerical solution S-system high accuracy
  • 相关文献

参考文献7

  • 1Savageau M A and Voit E O. Recasting nonlinear differential equations as S-Systems: A Canonical Nonlinear Form. Mathematical Biosciences, 1987,87:83-115.
  • 2Irvine D H and Savageau M A. Efficient solution of nonlinear ordinary differential equations expressed in s-system canonical form. SIAM Journal on Numerical Analysis, 1990, 27(3):704-735.
  • 3Irvine D H. Efficient solution of nonlinear models expressed in S- system canonical form. Mathematical Modeling, 1988, 11:123-128.
  • 4Savageau M A. Biochemical systems analysis I. Some mathe-matical properties of the rate law for the component enzymatic reactions. Theoret Biol, 1969, 25:365-369.
  • 5于志家,F Shiraishi.密封舱室内氧气再生过程的模拟计算[J].工程热物理学报,2005,26(5):808-810. 被引量:2
  • 6Shiraishi F. Highly accurate solution of the axial dispersion model expressed in s-system canonical form by Taylor series method. Chemical Engineering Journal, 2001, 83:175-183.
  • 7李绍芬.反应工程[M].第2版.北京:化学工业出版社,1999.

二级参考文献5

  • 1S Suzuki, R Tazawa, A Miya, et al. Gas Revitalization by Microalae. CELSS J., 1994, 7(1), 23-28.
  • 2T Adachi, A Miya, Fundamental Study for Design of Microalgae Culturing System Which Control CO2/O2 Concentration in the Closed Air, CELSS J., 1993, 6(1): 13-19.
  • 3F Shiraish, M Ohsumi. Several Methods for Judging the Validity of the Values of Steady-state Mass Circulation Fluxes Assigned in CELSS, CELSS J,, 1993, 6(1): 21-27.
  • 4F Shiraishi, et al. Oxygen circulation in CELSS. In: Proc.of the Meeting of Chem. Eng. Jpn., 1998. 203-209.
  • 5M Kiyota, A Tani, K Murakami, et al. Utilization of Higher Plant in Bioregeneratlve Life Surpport systems,CELSS J., 1995, 7(2): 27-33.

共引文献1

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部