期刊文献+

IIR数字滤波器的序列约束Chebyshev设计方法

A Sequential Constrained Chebyshev Design Method of IIR Digital Filters
原文传递
导出
摘要 进行无限冲击响应(IIR)数字滤波器的无约束Chebyshev设计时,得到的滤波器幅值响应通常在过渡带存在明显过冲现象,且通带边缘的群延迟误差较大。本文提出一种序列约束Chebyshev(SCC)方法,在通带和阻带最大频率响应(FR)误差小于某给定值ρ的条件下,使过渡带频率响应误差(相对某个具有单调幅值特性的过渡响应函数)的Cheby-shev模最小,并通过收缩和对分找出ρ的最小值。该方法不但可以使通带和阻带最大频率响应误差尽可能小,还能减小过渡带幅值响应的过冲以及带边群延迟误差。仿真实例表明了该方法的有效性。 The magnitude response of unconstrained Chebyshev infinite impulse response (IIR) digital filters usually demon- strates an obvious overshoot in the transition band and large group-delay error near the passband edge. This paper presents a sequential constrained Chebyshev (SCC) method that formulates the design as a series of constrained Chebyshev problems by minimizing the Chebyshev norm of the error between the transition-band frequency response (FR) and a preset monotoni- cally increasing/decreasing transient function subject to a constraint that the maximum magnitude of the passband and stop- band FR error is smaller than a given value p, the minimum value of which is obtained by a shrinking followed by bisection search. The SCC method can not only render as small as possible the maximum magnitude of the passband and stopband FR error, but also reduce obviously the magnitude overshoot on the transition band and the group-delay error near the passband edge. Simulation results demonstrate the effectiveness of the proposed method.
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第6期1077-1082,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61175001 60974102) 国家"973"计划(2012CB821200) 浙江省自然科学基金(Y1090109)~~
关键词 IIR滤波器 Chebyshev设计 幅值过冲 群延迟误差 序列约束Chebyshev方法 IIR filters Chebyshev design magnitude overshoot group-delay error sequential constrained Chebyshevmethod
  • 相关文献

参考文献16

  • 1Levy E C. Complex curve fitting. IEEE Transactions on Automatic Control, 1959, 4(3) : 37-43.
  • 2Sanathanan C K, Koerner J. Transfer function synthesis as a ratio of two complex polynomials. IEEE Transactions on Automatic Control, 1963, 8(1): 56-58.
  • 3Lang M C. Least-squares design of IIR filters with pre- scribed magnitude and phase responses and a pole radius constraint. IEEE Transactions on Signal Processing, 2000, 48(11): 3109-3121.
  • 4Jiang A, Kwan H K. IIR digital filter design with new stability constraint based on argument principle. IEEE Transactions on Circuits and Systems--I: Regular Papers, 2009, 56(3): 583-593.
  • 5Tarczynski A, Cain G D, Hermanowicz E, et al. A WISE method for designing IIR filters. IEEE Transactions on Signal Processing, 2001, 49(7): 1421-1432.
  • 6Tseng C C. Design of stable IIR digital filter based on least p power error criterion. IEEE Transactions on Cir- cuits and Systems I: Regular Papers, 2004, 51(9): 1879-1888.
  • 7Jiang A, Kwan H K. WLS IIR digital filter design using SOCP. International Conference on Communications, Cir- cuits and Systems. 2008: 784-788.
  • 8Chottera A T, Jullien G A. A linear programming aproach to recursive digital filter design with linear phase. IEEE Transactions on Circuits and Systems, 1982, 29(3) : 139- 149.
  • 9Rabiner L R, Graham N Y, Helms H D. Linear program- ming design of IIR digital filters with arbitrary magnitude function. IEEE Transactions on Signal Processing, 1974, 22(2) : 117-123.
  • 10Tseng C C, Lee S L. Minimax design of stable IIR digital filter with prescribed magnitude and phase responses. IEEE Transactions on Circuits and Systems--I: Regular Papers, 2002, 49(4): 547-551.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部