期刊文献+

一种基于证据距离的多分类器差异性度量 被引量:8

A Novel Diversity Measure of Multiple Classifier Systems Based on Distance of Evidence
原文传递
导出
摘要 多分类器系统因其能够显著提升分类精度而引发了广泛关注。多分类器系统中各子分类器间的差异性是提升融合分类精度的先决条件。提出了一种基于证据距离的分类器系统差异性度量,同时基于该度量提出一种多分类器系统构造方法。综合了既有差异性度量、所提新差异性度量以及在训练样本集上的分类性能等多个指标,实现了多分类器系统的有效构造。实验结果表明,所提差异性度量及多分类器系统构造方法是合理的,能有效提升融合分类精度。 Multiple classifier systems can effectively improve the classification performance, in many applications, which is why they have attracted a great deal of interest. Diversity among member classifiers is a necessary condition for improve- ment in classifier ensemble performance. In this paper, a novel diversity measure of multiple classifier systems is proposed based on the distance of evidence and a new approach to multiple classifier system design is presented. By using jointly the proposed diversity measure, the traditional diversity measure and the classification performance on training samples, an ef- fective multiple classifier system can be implemented. It is experimentally shown that the proposed diversity measure and the proposed approach to multiple classifier system design are rational and effective.
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第6期1093-1099,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家"973"计划(2007CB311006) 国家自然科学基金(61104214 61074176 67114022) 中国博士后科学基金(20100481337 201104670) 陕西省电子信息系统综合集成重点实验室基金(201101Y17) 重庆市自然科学基金(CSCT 2010BA2003)~~
关键词 多分类器系统 差异性度量 证据理论 证据距离 多分类器融合 分类器 multiple classifier system diversity measure evidence theory distance of evidence multiple classifier fu-sion classifiers
  • 相关文献

参考文献14

  • 1Xu L, Krzyzak A, Suen C Y. Methods of combining mul tiple classifiers and their applications to handwriting reeog nition. IEEE Transactions on Systems, Man and Cyber netics, 1992, 22 (3): 418-435.
  • 2Mashao D J, Skosan M. Combining classifier decisions for robust speaker identification. Pattern Recognition, 2006, 39(1): 147-155.
  • 3Sirlantzis K, Hoque S, Fairhurst M C. Diversity in multi ple classifier ensembles based on binary feature quantisati on with application to face recognition. Applied Soft Corn puting, 2008, 8(1): 437-445.
  • 4Kittler J, Hatef M, Duin R P W, et al. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3) : 226-239.
  • 5Windeatt T. Diversity measures for multiple classifier sys tern analysis and design. Information Fusion, 2005, 6(1) : 21-36.
  • 6Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles. Machine Learning, 2003, 51 (2):181-207.
  • 7Sharer G. A mathematical theory of evidence. Princeton:Princeton University Press, 1967.
  • 8Jousselme A L, Grenier D, Bosse E. A new distance be- tween two bodies of evidence. Information Fusion, 2001, 2(2): 91-101.
  • 9Tessem B. Approximations for efficient computation in the theory of evidence. Artificial Intelligence, 1993, 61 (2) : 315-329.
  • 10Brown G, Wyatt J, Harris R, et al. Diversity creation methods: a survey and categorization. Information Fu sion, 2005, 6(1): 5-20.

同被引文献102

引证文献8

二级引证文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部