期刊文献+

M_(π-)群的一个注记

A Note on M_(π-) Groups
原文传递
导出
摘要 设π是一个素数集合Isaacs建立了特征标π-理论,推广了Brauer模特征标理论.基于Isaacs的工作,定义了M_π-群,推广了M_p-群的概念,证明了若G是一个有限π-幂零群,则G是M-群当且仅当G是M-群. Abstract Let π be a set of primes. Isaacs established the π-theory of characters, which generalizes the theory of Brauer module characters. Based on Isaacs's work, we introduce the definition of Mπ-groups, a generalization of Mp-groups, and prove that if G is a finite π-nilpotent group then G is an M-group if and only if G is an Mπ-group.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第4期649-652,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11171169 11071155)
关键词 Π-幂零群 Mπ-群 Bπ-特征标 π-nilpotent group Mπ-groups Bπ1-characters
  • 相关文献

参考文献11

  • 1Isaacs I. M., Primitive characters, normal subgroups and M-groups, Math. Z., 1981, 177: 267-284.
  • 2Weinstein M. (ed.), Between Nilpotent and Solvable, Polygonal Publishing House, Passaic, New Jersey, 1982.
  • 3Nagao H., Tsushima Y., Representations of Finite Groups, Academic Press, New York, 1989.
  • 4Bessenrodt C., Monomial representations and generalizations, J. Austral. Math. Series A, 1990, 48:264-280.
  • 5Hanaki A., Hida A, A remarks on Mp-groups, Osaka J. Math., 1992, 29: 71-74.
  • 6Isaacs I. M., Characters of Л-separable groups, J. of Algebra, 1984, 86: 98-128.
  • 7Isaacs I. M., Character Theory of Finite Groups, Academic Press, New York, 1976.
  • 8Hanaki A., On minimal non Mp-groups, Arch. Math., 1993, 60:316- 320.
  • 9Hanaki A., A characterization of Mp-groups, Proc. Amer. Math. Soc., 1994, 121(2): 357-359.
  • 10Huppert B., Character Theory of Finite Groups, Walter De Gruyter, Berlin, New York, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部