摘要
设π是一个素数集合Isaacs建立了特征标π-理论,推广了Brauer模特征标理论.基于Isaacs的工作,定义了M_π-群,推广了M_p-群的概念,证明了若G是一个有限π-幂零群,则G是M-群当且仅当G是M-群.
Abstract Let π be a set of primes. Isaacs established the π-theory of characters, which generalizes the theory of Brauer module characters. Based on Isaacs's work, we introduce the definition of Mπ-groups, a generalization of Mp-groups, and prove that if G is a finite π-nilpotent group then G is an M-group if and only if G is an Mπ-group.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第4期649-652,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11171169
11071155)