期刊文献+

稀疏阵列L型MIMO雷达运动目标三维成像方法 被引量:6

Three-Dimensional Imaging Method of Moving Target for L-type MIMO Radar with Sparse Array
下载PDF
导出
摘要 针对L型多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达对空中运动目标三维成像天线数目较多问题,提出了发射阵列采用稀疏布阵的L型MIMO雷达三维成像方法。该文首先分析了MIMO雷达发射阵列的稀疏布阵方式,其次结合压缩感知理论具体阐述了基于稀疏阵列的三维成像方法。该方法在大幅减少L型MI-MO雷达发射天线的条件下,实现了对运动目标的单次快拍三维成像,不仅有效避免了目标机动带来的运动补偿难题,同时又降低了系统的硬件复杂度,便于工程应用。最后利用仿真实验验证了本文方法的有效性和可行性。 The number of antenna elements of L-type Multiple-Input Multiple-Output (MIMO) radar is quite large when imaging for moving target with single snapshot. To solve this, a 3-D imaging method for L-type MIMO radar based on sparse array is proposed. Firstly, the configuration of sparse transmitting antenna array is analyzed. Then, combining com- pressed sensing theory, a novel 3-D imaging algorithm based on sparse array is put forward. Under the condition of the re- duced number of antenna, 3-D imaging for moving target can be implemented by using this algorithm, it not only avoids the difficulty of motion compensation aroused by the target' s maneuver, but also reduces the complexity of the system with ad- vantage to engineering realization. Finally, the effectiveness and feasibility of this algorithm is validated by the simulative re- suits.
出处 《微波学报》 CSCD 北大核心 2012年第3期90-96,共7页 Journal of Microwaves
基金 国家重点基础研究发展计划(973计划)(2010CB731905)
关键词 L型MIMO雷达 三维成像 稀疏阵列 压缩感知 单次快拍 L-type MIMO radar, 3-D imaging, sparse array, compressed sensing, single snapshot
  • 相关文献

参考文献12

  • 1Zhang Q, Yeo T S, Du G, et al. Estimation of three-dimensional motion parameters in interferometrie ISAR imaging[J]. IEEE Trans. Geosci. Remote Sens. , 2004, 2 (42) : 292 - 300.
  • 2Ma C Z, Yeo T S, Tan C S, et al. Three-dimensional imaging of targets using collocated MIMO radar [ J ]. IEEE Trans. Geosci. Remote Sens. , 2011. 4 (21) : 1- 13.
  • 3Duan G Q, Wang D W, Ma X Y, et al. Three-dimensional imaging via wideband MIMO radar system [ J ]. IEEE Geosci. Remote Sens. Lett. , 2010, 3(7) : 445 - 449.
  • 4Donoho D L. Compressed sensing[ J ]. IEEE Trans. Information Theory, 2006, 52(4) : 1289-1306.
  • 5Richard Baraniuk, Philippe Steeghs. Compressive radar imaging [ A ]. IEEE Radar Conference [ C ], Boston, MA, 2007:128-133.
  • 6石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 7李军,邢孟道,张磊,吴顺君.一种高分辨的稀疏孔径ISAR成像方法[J].西安电子科技大学学报,2010,37(3):441-446. 被引量:27
  • 8王怀军,许红波,陆珉,粟毅.基于MIMO雷达的高分辨成像方法[J].微波学报,2009,25(5):79-83. 被引量:12
  • 9郑远,胡英辉,邓云凯.混沌相位编码信号成像与反欺骗干扰仿真[J].系统仿真学报,2008,20(15):3962-3965. 被引量:6
  • 10Candes E. The restricted isometry property and its implications for compressed sensing [ J ]. Comptes Rendus Mathematic, 2006, 2,16 (9): 589-592.

二级参考文献110

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Ian G Cumming,Frank H Wong.合成孔径雷达成像-算法与实现[M].洪文,等,译.北京:电子工业出版社,2007:249-270.
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献744

同被引文献44

  • 1陈思思,李跃华,陈昆.基于压缩感知的毫米波一维距离像算法研究[J].微波学报,2012,28(S1):257-259. 被引量:1
  • 2粟毅,朱宇涛,郁文贤,许红波,雷文太.多通道雷达天线阵列的设计理论与算法[J].中国科学:信息科学,2010,40(10):1372-1383. 被引量:10
  • 3Schell S V,Gardner W A,Agee B G. Cyclic MUSIC al-gorithms for signal - selective direction estimation [ A ].Proceedings of IEEE[C],1989 (5) : 2278-2281.
  • 4Guanghan X. Direction of arrival estimation via exploita-tion of cyclostationarity - a combination of temporal andspatial processing [ J]. IEEE Transactions on Signal Pro-cessing, 1992, 40(7) : 1775-1785.
  • 5Bascal C, Yide W, Joseph S. Cyclostationarity-exploitingdirection finding algorithms [ J ]. IEEE Transactions onAerospace and Electronic systems, 2003, 39(3) : 1051-1056.
  • 6Donoho D L. Compressive sampling[ J]. IEEE Transac-tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 7Gorodnitsky I,Rao B, Wakin M B. Sparse signal recon-struction from limited data using Focuss: A re-weightedminimum norm algorithm [ J]. IEEE Transactions on Sig-nal Processing, 1997,45(3) : 600-616.
  • 8Mailioutov D, Cetin M, Willsky A. A sparse signal re-construction perspective for source localization with sensorarrays [ J ]. IEEE Transactions on Signal Processing,2005, 53(8) : 3010-3022.
  • 9Hyder M M,Mahata K. Direction-of-anival estimation u-sing a mixed 1-2 norm approximation [ J ]. IEEE Transac-tions on Signal Processing, 2010,58(9) : 4646-4655.
  • 10Schmidt R. Multiple emitter location and signal parameterestimation[ J] . IEEE Transactions on Antennas Propaga-tion, 1986,34(3): 276-280.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部