期刊文献+

一类三圈图的Wiener指数 被引量:4

The Wiener Index of a Class of Tricvclic GraDhs
下载PDF
导出
摘要 图G的Wiener指数是指图G中所有顶点对间的距离之和,即W(G)=∑dc(u,u),{u,u}CG其中de(u,u)表示G中顶点u,u之间的距离.三圈图是指边数与顶点数之差等于2的连通图,任意两个圈至多只有一个公共点的三圈图记为T_n^3.研究了三圈图T_n^3的Wiener指数,给出了其具有最小、次小Wiener指数的图结构. The Wiener index of the graph G is difined by the sum of distances between all pairs of vertices in G. A tricyclic graph is a connected graph with n vertices and n + 2 edges. In this paper, we study the wiener index of tricyclic graphs τ3n which have at most a common vertex between any two circuits, and the smallest, the second-smallest Wiener indices of the tricyclic graphs τ3n are given.
作者 万花 任海珍
出处 《数学研究》 CSCD 2012年第2期207-212,共6页 Journal of Mathematical Study
基金 国家自然科学基金项目(11061027 11161037) 青海省自然科学基金项目(2011-Z-911)
关键词 三圈图 WIENER指数 距离 Wiener index Tricyclic graph Distance
  • 相关文献

参考文献7

  • 1Wiener H. Structural determination of paraffin boiling points. J Amer Chen Soc, 69 (1947): 17-20.
  • 2Hosoya H. Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Soc Japan, 4(1971): 2332-2339.
  • 3Dobrymin A A, Entriger R and Gutman I. Wiener index of trees: theory and applica- tions. Acta Appl Math, 66(2001): 211-249.
  • 4汤自凯,邓汉元.单圈图的Wiener指数.湖南师范大学硕士毕业论文,2007.
  • 5Gutman I. Pavlovic Ljiljana. On the coefficients of the Laplacian characteristic poly- nomial of trees: Bulletin T. CXXVII de l'Academie Serbe des Sciences et des Arts- 2003 Classe des Sciences mathematiques et naturelles Sciences mathematiques, NO. 28.
  • 6Liu H and Lu M. A unified approach to extremal cacti for different indices. MATCH Commun. Math Comput Chem, 58(2007): 193-204.
  • 7Li S, Li X and Zhu Z. On tricyclic graphs with minimal energy. MATCH Commun. Math Comput Chem, 59(2008): 397-419.

同被引文献16

  • 1H. Wiener. Structural determination of paraffin boiling points [J]. J. Amer. Chem. Soc. ,1947, 69:17 -20.
  • 2汤白凯,郑汉元.单圈图的Wiener指数[D].湖南师范大学,2007.
  • 3I. Gutman, J. H. Potgieter, Wiener index and intermoleeular forces [ J]. J. Seth. Chem. Soe. ,1997, 62:185 - 192.
  • 4Dobrym in a Gutm, S. Klavzar, et al. Wiener index of hexagonal system s [ J ]. Acta App. Math. ,2002,72 : 247 - 294.
  • 5B. Zhou, X. Cai, N. Trinajstie . On reciprocal complementary Wiener number of trees [ J]. Discrete Appl. Math. ,2009 , 157: 1628 - 1633. S.
  • 6Nikolie, C. J. Trina. The Wiener index : developments and ap- plications [ J]. Great. Chem. Acta. , 1995, 68 : 105 - 129.
  • 7X. Qi, B. Zhou. Extremal properties of reciprocal complementary Wiener number of trees [ J ]. Computers and Mathematics with Applications, 2011,62 : 523 - 531.
  • 8H. Liu, M. Lu. A unified approach to extremal cacti for different indices [ J ]. MATCH Commun. Math. Comput. Chem. , 2007, 58 : 193 - 204.
  • 9汤自凯,邓汉元.一类双圈图中具有最大、最小Wiener指数的图[J].湖南师范大学自然科学学报,2008,31(1):27-30. 被引量:3
  • 10林晓霞.若干图类的Wiener指数的极值(英文)[J].运筹学学报,2010,14(2):55-60. 被引量:7

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部