摘要
图G的Wiener指数是指图G中所有顶点对间的距离之和,即W(G)=∑dc(u,u),{u,u}CG其中de(u,u)表示G中顶点u,u之间的距离.三圈图是指边数与顶点数之差等于2的连通图,任意两个圈至多只有一个公共点的三圈图记为T_n^3.研究了三圈图T_n^3的Wiener指数,给出了其具有最小、次小Wiener指数的图结构.
The Wiener index of the graph G is difined by the sum of distances between all pairs of vertices in G. A tricyclic graph is a connected graph with n vertices and n + 2 edges. In this paper, we study the wiener index of tricyclic graphs τ3n which have at most a common vertex between any two circuits, and the smallest, the second-smallest Wiener indices of the tricyclic graphs τ3n are given.
出处
《数学研究》
CSCD
2012年第2期207-212,共6页
Journal of Mathematical Study
基金
国家自然科学基金项目(11061027
11161037)
青海省自然科学基金项目(2011-Z-911)