期刊文献+

局部共形平坦流形上的Schouten张量及其应用(英文)

A SCHOUTEN TENSOR ON THE LOCALLY CONFORMALLY FLAT MANIFOLD AND ITS APPLICATION
下载PDF
导出
摘要 M是一个紧致的局部共形平坦黎曼流形,其上定义的Schouten张量是一个Codazzi张量.本文借助这个Codazzi张量引入Cheng和Yau的自伴算子,获得了局部共形平坦流形上的一些新的结果. Consider a compact locally conformally flat Riemannian manifold M and dimension n ≥ 3. The Schouten tensor on M is a Codazzi tensor. In this paper, we introduce Cheng-Yau's self-adjoint operator □ for this Codazzi tensor and obtain some new results on locally conformally flat Riemannian manifold.
出处 《南京大学学报(数学半年刊)》 CAS 2012年第1期51-58,共8页 Journal of Nanjing University(Mathematical Biquarterly)
基金 the NSF of Anhui Province(KJ2008A05zC) Postgraduate Start Foundation of Chizhou College(2010RC019)
关键词 局部共形平坦 SCHOUTEN张量 RICCI曲率 数量曲率 locally conformally fiat, Schouten tensor, Ricci curvature, Scalar curvature
  • 相关文献

参考文献6

  • 1Li H Z. Global Rigidity Theorems of Hypersurface. Ark. Mat, 1997, 35: 327-351.
  • 2Hu Z J, Li H Z and and Udo Simon. Schouten Curvature Functions on Locally Conformally Flat Riemannian Manifolds. J.Geom. 2008, 88: 75-100.
  • 3Cheng S Y and Yau S T. Hypersurfaces with Constant Scalar Curvature. Math. Ann., 1977, 225: 195-204.
  • 4Okumura M. Hypersurfaces and a Pinching Problem on the Second Fundamental Tensor. Amer. J. Math., 1974, 96: 207-213.
  • 5Li H Z. Hypersurfaces with Constant Scalar Curvature in Space forms. Math. Ann., 1996, 305: 665-672.
  • 6Cheng Q M. Compact Locally Conformally Flat Riemannian Manifolds. Bull. London Math. Soc 2001, 33: 459-465.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部