摘要
本文主要讨论了一个满足Dirichlet边界条件的二阶p-Laplacian差分方程正解的存在性.通过利用Leggett-Williams不动点定理的一个推广证明了差分方程△(φ_p(△u(t-1)))+q(t)f(t,u(t))=0,t∈N[1,T]={1,2,…,T}在Dirichlet边界条件u(0)=u(T+1)=0下,当f(t,u)满足一定条件时,至少存在三个正解,这里,φ_p(s)=|s|^(p-2)·s是一个p-Laplacian算子.
In this paper,we mainly consider a second-order p-Laplacian difference equation with Dirichlet boundary value conditions.By using a generalization of the Leggett-Williams fixed-point the- orem due to Avery and Peterson,the existence of at least three positive solutions is established for the following boundary value problem:{△(Фp(△u(t-1)))+1(t)f(t,u(t))=0,t∈N[1,T],u(0)=u(T+1)=0
出处
《南京大学学报(数学半年刊)》
CAS
2012年第1期59-65,共7页
Journal of Nanjing University(Mathematical Biquarterly)