期刊文献+

二维声学数值计算的径向插值有限元法 被引量:2

Radial Interpolation Finite Element Method for Two Dimension Acoustic Numerical Computation
下载PDF
导出
摘要 针对声学有限元分析中四节点等参单元计算精度低,对网格质量敏感的问题,将无网格径向插值技术引入到标准有限元中,构造径向插值形函数,推导径向插值有限元法(Radial interpolation finite element method,RIFEM)的二维声学数值计算公式。二维声学RIFEM采用标准有限元法形函数构造系统离散方程的声学刚度矩阵和边界积分矢量,保证了声压梯度和边界条件在区域边界的积分精度;采用径向插值形函数构造系统离散方程的质量矩阵,提高了声压数值近似函数的插值精度。对管道二维声腔模型和某轿车二维声腔模型的数值分析结果表明,与标准有限元法和SFEM相比,RIFEM的计算精度更高,对波数、单元尺寸和网格扭曲程度的灵敏度更低。因此RIFEM可以很好地应用于二维声学数值分析,具有广阔的工程应用前景。 Aiming at the problems of low accuracy and sensitivity to the mesh's quality of four-node isoparametric element in the acoustic finite element method(FEM),the radial interpolation finite element method(RIFEM),whose shape function is based on the meshless radial interpolation method,is proposed for two dimension acoustic problem.In acoustic RIFEM,the acoustic stiffness matrix and the vectors of the boundary integrals are constructed by the bilinear shape function,to maintain the integral accuracy of the sound pressure derivatives and the accurate boundary conditions applied on region boundary.The acoustic mass matrix is constructed by the shape function of the RIFEM by using the four-node isoparametric element,to improve the interpolation accuracy of the approximated sound pressure function.Numerical examples of a two-dimensional tube and a two-dimensional acoustic cavity of automobile are presented to show that RIFEM achieves higher accuracy,and is less sensitive to the wave number,the size of mesh,the level of mesh distortion as compared with FEM and SFEM.Hence the RIFEM can be well applied in solving two dimensional acoustic problems,and has a wide application foreground.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第11期159-165,共7页 Journal of Mechanical Engineering
基金 湖南大学汽车车身先进设计制造国家重点实验室自主课题资助项目(60870002)
关键词 有限元法 径向插值 HELMHOLTZ方程 声学数值计算 Finite element method Radial interpolation method Helmholtz equation Acoustic numerical computation
  • 相关文献

参考文献16

  • 1THOMPSON L L. A review of finite-element methods for time-harmonic acoustics[J] Society of America, 2006, Journal of the Acoustical 119(3).. 1315-1330.
  • 2DERAEMAEKER A, BABU~KA I, BOUILLARD E Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimension[J]. International Journal for Numerical Methods in Engineering, 1999, 46(4): 471-499.
  • 3姚凌云,于德介,臧献国.二维声学数值计算的光滑有限元法[J].机械工程学报,2010,46(18):115-120. 被引量:8
  • 4YAO Linyun, YE Dejie, ZANG Xianguo. Numerical treatment of acoustic problems with the smoothed finite element method[J]. Applied Acoustics, 2010, 71(8): 743-753.
  • 5BIERMANN J, VON ESTORFF O, PETERSEN S, et al. Higher order finite and infinite elements for the solution of Helmholtz problems[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(13-14): 1171-1188.
  • 6MOHAMED M S, LAGHROUCHE O, EL-KACIMI A. Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems[J]. Computers & Structures, 2010, 88(23-24): 1484-1491.
  • 7STROUBOULIS T, BABUKA I, HIDAJAT R. The generalized fmite element method for Helmholtz equation: Theory, computation, and open problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(37-40): 4711-4731.
  • 8STROUBOULIS T, HIDAJAT R, BABUKA I. Thegeneralized finite element method for Helmholtz equation, part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(5): 364-380.
  • 9HE Zeng, LI Pang, LI Zhijiang, et al. Dispersion and pollution of the improved meshless weighted least-square (IMWLS) solution for the Helmholtz equation[J]. Engineering Analysis with Boundary Elements, 2011, 35(5)- 791-801.
  • 10HE Zeng, LI Peng, ZHAO Gaoyu, Galerkin least-square method for equation[J]. Engineering Analysis Elements, 2011, 35(6): 868-878, et al. A meshless the Helmholtz with Boundary.

二级参考文献13

  • 1PETERSEN S, DREYER D, ESTORFF O V. Assessment of finite and spectral element shape functions or efficient iterative simulations of interior acoustics [J]. Computer Methods in Applied Mechanicals and Engineering, 2006, 195:6 463-6 478.
  • 2RONG Zhijian, XU Chuanju. Numerical approximation of acoustic by spectral element methods [J]. Applied Numerical Mathematics, 2008, 58:999-1 016.
  • 3HARARI I, MAGOULES F. Numerical investigations of stabilized finite element computations for acoustics [J]. Wave Motion, 2004, 39:339-349.
  • 4BOUILLARD P, SULEAU S. Element-Free Garlekin so- lutions for Helmholtz problems:Formulation and numerical assessment of the pollution effect [J]. Com- puter Methods in Applied Mechanicals and Engineering, 1998, 162:317-335.
  • 5BOUILLARD P, LACROIX V, BEL E D. A wave orien- ted meshless formulation for acoustical and vibro-acoustical applications [J]. Wave Motion, 2004, 39:295-305.
  • 6LIU Guirong, NGUYEN T T, DAI Kuiyang, et al. Theoretical aspects of the smoothed finite element method (SFEM) [J]. International Journal for Numerical Methods in Engineering, 2007, 71 (8):902-930.
  • 7LIU Guirong, DAI Kuiyang, NGUYEN T T. A smoothed finite element method for mechanics problems [J]. Computational Mechanics, 2007, 6(39):859-877.
  • 8NGUYEN-XUAN H, RABCZUK T, BORDAS S, et al. A smoothed finite element method for plate analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197:1 184-1 203.
  • 9NGUYEN-THANH N, RABCZUK T, NGUYEN-XUAN H, et al. A smoothed finite element method for shell analysis [J]. Computer Methods in Applied, Mechanics and Engineering, 2008, 198(2):165-177.
  • 10CUI Xiangyang, LIU Guirong, LI Guangyao, et al. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells [J]. Computer Methods Applied Mechanics and Engineering, 2008, 28(2):1 184-1 203.

共引文献7

同被引文献25

  • 1RICHTER G R. An explicit finite element method for the wave equation[J]. Applied Numerical Mathematics, 1994, 16(1-2): 65-80.
  • 2IHLENBURG F, BABUKA I. Finite element solution of the Helmholtz equation with high wave number part I. The h-version of the FEM[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 38(9):9-37.
  • 3IHLENBURG F, BABUKA I. Finite element solution of the Helrnholtz equation with high wave number part II: The h-p version of the FEM[J]. SIAM Journal on NumericalAnalysis, 1997, 34(1): 315-358.
  • 4CHEN J T, CHEN K H, CHYUAN S W. Numerical experiments for acoustic modes of a square cavity using the dual boundary element method[J]. Applied Acoustic, 1999, 57. 293-325.
  • 5BOUILLARD P, SULEAU S. Element-free Galerkin solutions for Helmholtz problems: Formulation and numerical assessment of the pollution effect[J]. Computer Methods inApplied Mechanicals and Engineering, 1998,162: 317-335.
  • 6BOUILLARD P, LACROIX V, BELE D. A wave oriented meshless formulation for acoustical and vibro-acoustieal applications[J]. Wave Motion, 2004, 39: 295-305.
  • 7HE Zeng, LI Peng, L1 Zhijiang, et al. Dispersion and pollution of the improved meshless weighted least-square (IMWLS) solution for the Helmholtz equation[J]. Engineering Analysis with Boundary Elements, 2011, 35(5): 791-801.
  • 8HE Zeng, LI Peng, ZHAO Gaoyu, et al. A meshless Galerkin least-square method for the Helmholtz equation[J]. Engineering Analysis with Boundary Elements, 2011, 35(6): 868-878.
  • 9YAO Linyun, YU Dejie, ZANG Xianguo. Numerical treatment of acoustic problems with the smoothed finite element method[J]. Applied Acoustics, 2010, 71(8): 743-753.
  • 10HE Zhicheng, LIU Guirong, ZHONG Zhihua, et al. An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems[J]. Computer Methods in Applied Mechanicals and Engineering, 2009, 199: 20-33.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部