期刊文献+

基于边界加扰动的Helmhotz方程柯西问题的正则化

BASED ON THE BOUNDARY MODIFICATION REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF HELMHOLTZ EQUATIONS
下载PDF
导出
摘要 Helmhotz方程的柯西问题是一类典型的反问题而且是不适定的,也就是说其解不连续依赖于柯西数据,即小的扰动都会导致解的爆破。文章给出了边界加扰动的正则化方法,恢复了解对数据的连续依赖性,并给出了收敛性估计。最后用数值例子说明我们的方法是有效可行的。 The Cauchy problems for the Helrnholtz equations are considered. The problem is ill-posed in the sense that the solution (if exists) does not depend continuously on the given data. In order to obtain a stability approximation solution of the problem, it is necessary to employ some regularized techniques. Furthermore, we use the boundary modification regularized method to solve the Cauchy problems for Helmholtz equations and give the convergence estimates. Finally, the numerical examples show that the proposed numerical method works effectively.
作者 刘利平
出处 《井冈山大学学报(自然科学版)》 2012年第4期21-24,共4页 Journal of Jinggangshan University (Natural Science)
关键词 Helmhotz方程 柯西问题:不适定问题 边界加扰动的正则化方法 误差估计 Key words: Helmhotz equation Cauchy problem ill-posed problem the boundary modification regularizationmethod error estimate
  • 相关文献

参考文献10

  • 1Beskos D E. Boundary element methods in dynamic analysis[J].Applied Mechanics Reviews,1997,(03):149-197.
  • 2Chen J T,Wong F C. Dual formulation of multiple reciprocity methodfor the acoustic mode of a cavity with a thin partition[J].Journal of Sound and Vibration,1998,(01):75-95.
  • 3Hrycak T,Isakov V. Increased stability in the continuation of solutions to the Helmholtz equation[J].Inverse Problems,2004,(03):697-712.doi:10.1088/0266-5611/20/3/004.
  • 4Hadamard J. Lectures on Cauchy's problem in linear partial differential equations[M].New York:Dover Publications,Inc,1953.
  • 5刘继军.不适定问题的正则化方法及应用[M]北京:科学出版社,2005.
  • 6Isakov V. Inverse problems for partial differential equations.vol,127 of Applied Mathematical Sciences[M].New York:springer-verlag,1998.
  • 7Tikhonov A,Arsenin V. Solutions of ill-posed problems[M].New York:V.H.Winston& Sons,Washington,D.C.:John Wiley & Sons,1977.
  • 8Jin B,Zheng Y. A meshless method for some inverse problems associated with the Helmholtz equation[J].Computer Methods in Applied Mechanics and Engineering,2006,(19-22):2270-2288.
  • 9Reginska T,Reginski K. Approximate solution of a Cauchy problem forthe Helmholtz equation[J].Inverse Problems,2006,(03):975-989.doi:10.1088/0266-5611/22/3/015.
  • 10Matin L,Elliott L,Heggs P J. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations[J].Computational Mechanics,2003,(3-4):367-377.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部