期刊文献+

基于遗传蚁群算法的测试用例集约简 被引量:8

Test-suite Reduction Based on Genetic Algorithm and Ant Colony Algorithm
下载PDF
导出
摘要 为提高软件测试效率,节省回归测试成本,本文提出了一种新的约简测试用例集的算法.该算法是遗传算法和蚁群算法两种算法的结合,首先利用遗传算法的快速随机全局搜索能力,生成蚁群算法的初始信息素,然后利用蚁群算法的正反馈性,快速得到约简测试用例集的近似最优解.最后通过仿真实验验证了该算法的有效性. To improve the efficiency of software testing and save the cost of regression testing, a new test-suite reduction algorithm is proposed. This method combines the genetic algorithm and the ant colony algorithm. Firstly, the algorithm uses the fast and random global search capability of the genetic algorithm to generate the initialization pheromone required by the ant colony algorithm, and then uses the positive feedback of the ant colony algorithm to quickly get the approximate optimal solution of test-suite reduction. The simulation results show feasibility and effectiveness of the proposed method.
出处 《工程数学学报》 CSCD 北大核心 2012年第4期486-492,共7页 Chinese Journal of Engineering Mathematics
基金 教育部人文社会科学青年项目(10YJC790247) 湖北省教育厅中青年项目(Q20112604) 襄樊学院科研青年项目(2009YB025)~~
关键词 遗传算法 蚁群算法 测试用例集约减 测试运行代价 genetic algorithm ant colony algorithm test-suite reduction test execution cost
  • 相关文献

参考文献6

  • 1Hua L, Ding X M. Test-suite reduction based on ant colony algorithm with mutation index[C]//ICCSE', 2008:74-76.
  • 2马雪英,盛斌奎.测试用例最小化研究[J].计算机应用研究,2007,24(7):35-39. 被引量:8
  • 3Pan Z J, Kang L S, Chen Y P. Evolutionary Computation[M]. Beijing: Tsinghua University Press, 1998.
  • 4Dorigo M, et al. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(1): 29-41.
  • 5丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 6Stutzle T, Hoos H H. Max-Min ant system[J]. Future Generation Computer System, 2000, 16(8): 889-914.

二级参考文献27

  • 1马雪英,姚砺,叶澄清.面向对象软件测试引擎的设计和实现[J].计算机科学,2004,31(7):137-140. 被引量:2
  • 2Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 3Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 4Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 5Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 6Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 7BAUDRY B,FLEUREY F,J(E)Z(E)QUEL J M,et al.Genes and bacteria for automatic test cases optimization in the.NET environment:proc.of ISSRE'02(International Symposium on Software Reliability Engineering)[C].Annapolis,USA:[s.n.],2002:195-206.
  • 8GOLDBERG D E.Genetic algorithms in search,optimization and machine learning[M].[S.l.]:Addison-Wesley,1989.
  • 9HOLLAND J H.Adaptation in natural and artificial systems[M].[S.l.]:University of Michigan Press,1974.
  • 10ROSENBLUM D S,WEYUKER E J.Using coverage information to predict the cost-effectiveness of regression testing strategies[J].IEEE Transaction on Software Engineering,1997,23(3):146-156.

共引文献293

同被引文献65

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部