期刊文献+

基于随机有限集的目标跟踪方法研究及最新进展 被引量:16

Survey of Target Tracking Based on Random Finite Set
下载PDF
导出
摘要 本文概述了基于随机有限集的目标跟踪方法的产生、发展和研究现状.论文概要总结了基于随机有限集的目标跟踪方法的基础理论,主要包括随机有限集的理论基础,概率假设密度滤波器的理论基础,概率假设密度滤波器的实现方式以及基于随机有限集的目标跟踪算法的性能评价指标.文中同时简要介绍了概率假设密度滤波器在目标跟踪领域的应用,并对在该领域未来的发展提出了自己的看法. This paper describes the emergence, the development and the present research situation on the random finite set (RFS) theory in target tracking. The paper summarizes some theoretical points about target tracking based on RFS, including the fundamental theory of RFS, the fundamental theory of probability hypothesis density (PHD) filter, the implementation of PHD filter and the quality assexxment measure of performance for the filter based on RFS. The applications of RFS theory in target tracking are briefly introduced and some comments on PHD filter's developing prospects are proposed.
出处 《工程数学学报》 CSCD 北大核心 2012年第4期567-578,共12页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60921003 61074176) 国家"973"重点基础研究发展规划项目(2007CB311006)~~
关键词 随机有限集 概率假设密度 目标跟踪 random finite set probability hypothesis density target tracking
  • 相关文献

参考文献62

  • 1Matheron G. Random Sets and Integral Geometry[M]. New York: Wiley, 1975.
  • 2Baddeley A J, Lieshout M N. ICM for Object Recognition[M]. Heidelberg: Physica/Springer, 1992.
  • 3Mahler R. A theoretical foundation for the Stein-Winter probability hypothesis density (PHD) multi-target tracking approach[C]// Proceedings of the MSS National Symposium on Sensor and Data Fusion, San Antonio, TX, 2000:99-117.
  • 4Mahler R. Engineering statistics for multi-object tracking[C]//Signal and Data Processing of Small Targets, SPIE Proceedings, Vancouver, 2001:53-60.
  • 5Mahler R. Multitarget moments and their application to multitarget tracking[C]// Proceedings of the Workshop on Estimaiton, Tracking, and Fusion, Monterey, CA, 2001:134-166.
  • 6Mahler R. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 7Mahler R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543'.
  • 8Mahler R. Random sets: unification and computation for information fusion--a retrospective assess- ment[C]// Proceeds of the 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 1-20.
  • 9Mahler R. Multisource-multitarget detection and acquisition: a unified approach[C]// Signal and Data Processing of Small Targets, SPIE Proceedings, Denver, CO, 1999:218-229.
  • 10Mahler R. Unified sensor management using CPHD filters[C]// Proceedings of the 10th International Conference on Information Fusion, Quebec, Canda, 2007:233-239.

二级参考文献127

  • 1田淑荣,盖明久,何友.随机集的概率假设密度粒子滤波[J].海军航空工程学院学报,2006,21(4):455-458. 被引量:4
  • 2陈良洲,施文康.时间序列分析的随机集方法[J].上海交通大学学报,2005,39(3):400-404. 被引量:6
  • 3邓勇,朱振福,钟山.基于证据理论的模糊信息融合及其在目标识别中的应用[J].航空学报,2005,26(6):754-758. 被引量:63
  • 4Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transaction on Signal Processing, 2005, 53(7): 2279 -2289.
  • 5Schon T, Karlsson R, Gustafsson F. The marginalized particle filter in practice[R]. Linkoping: Linkoping University, LiTH-ISY-R 2715, 2005.
  • 6Anderson B D O, Moore J B. Optimal filtering[M]. Engle wood Ciffs, NJ: Prentice-Hall, 1979.
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings F, 1993, 140(2): 107-113.
  • 8Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 9Karlsson R, SchOn T. Complexity analysis of the marginalized particle filter[R]. Linkoping: Linkoping University, LiTHISY-R-2611 , 2004.
  • 10Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3), 613-624.

共引文献58

同被引文献138

  • 1密君英,李凡长.Agent系统的随机集表示[J].计算机工程,2005,31(6):145-147. 被引量:1
  • 2武良丹,贺西平,张小凤.超声回波参数的高斯与牛顿迭代法计算[J].陕西师范大学学报(自然科学版),2006,34(3):56-58. 被引量:3
  • 3Bar-Shalom Y. Tracking and data association[ M]. San Diego, USA: Academic Press, 1988.
  • 4Bar-Shalom Y. Multitarget-multisensor tracking: Principles and techniques[M]. Storrs, CO, USA: YBS Publishing, 1995.
  • 5Mahler R. Statistical multisource multitarget information fusion[ M ]. Norwood, MA, USA: Artech House, 2007.
  • 6Mahler R. Multi-target Bayes filtering via first-order multi-target moments [J].IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4) : 1152 -1178.
  • 7Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aero- space and Electronic Systems, 2005,41 (4) : 1224 -1245.
  • 8Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter[ J]. IEEE Transactions on Aerospace and Elec- tronic Systems, 2007, 43(4) : 1441 - 1453.
  • 9Liu W F, Han C F, Lian F, et al. Multitarget state extraction for the PHD filter using MCMC approach L J J. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2) : 864 -883.
  • 10Dunne D, Tharmarasa R, Kirubarajan T. SMC-PHD-based multi-target tracking with reduced peak extraction [ C ]//Proceedings of the Signal and Data Processing of Small Targets. Los Angeles, USA : SPIE, 2009, 7445 : 74450F.

引证文献16

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部