期刊文献+

关于高余维子流形的浸入问题

The problems of immersion about higher codimension submanifold
下载PDF
导出
摘要 高余维子流形的浸入是一个难处理的问题.本文研究在余维数为二的情况下,对关于某一类张量为全脐点子流形的Pick不变量,作出拉普拉斯估计,从而得到高余维子流形浸入的一些整体结果. The immersions of higher codimension submanifold are a difficult problems.In this paper,centroaffine differential geometry of condimension two is studied,and the Laplace estimation of the Pick Invariant J on totally umbilical submanifold about tensor Hij is given,and some whole immersion results are obtained.
作者 李滨
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期257-260,共4页 Journal of Central China Normal University:Natural Sciences
基金 四川省教育厅科研项目(08SA148)
关键词 全脐点子流形 张量 二次锥 浸入 totally umbilical submanifold tensor quadratic cone immersion
  • 相关文献

参考文献8

  • 1Nomizu K, Sasaki T. Centroaffine immersions of eodimen-sion two and projective hypersurfaee theory[J]. Nagoya Math,1993,132(3) : 63-90.
  • 2Seharlaeh C. Centroaffine first order invariants of surfaces in R4[J]. Results in Math,1995,27(4) : 141-159.
  • 3Waiter R. Centroaffine differential geometry submanifolds of codimension 2[J]. Results in Math, 1988, 13(2):386-402.
  • 4Blaschke T. Affine Differential-geometrie [D]. Berlin: Springer Vorlesungen uber Differential-geometrie, 1923: 95-101.
  • 5Li A, Gabi P. Uniqueness theorems in affine differential ge- ometry[J]. Results in Math,1988, 13(2):224-228.
  • 6Nomizu K. What is Affine Differential Geometry [D]. Ta- gungsbericht : Differential Geometry Meeting Univ MUnster, 1982:23-25.
  • 7Shwenk A. Eigenwertprobleme des Laplace-operators und Anwendungen auf Untermannigfaltigkeiter[D]. Berlin: Dis- sertation TU, 1984 : 35-38.
  • 8Simon U. The pick invariant in equiaffine differential geome- try[J]. Abh Math Sem Hambung, 1983,53 (10) : 225-228.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部