期刊文献+

一种解非线性方程组的四阶迭代方法 被引量:1

An Iterative Methods to Solve Systems of Nonlinear Equations with Fourth-order Convergence
下载PDF
导出
摘要 结合两种已知的解非线性方程组的迭代方法,给出了一种新的解非线性方程组的四阶迭代方法,并证明了其具有四阶收敛性.然后,通过数值实例对几种不同的迭代方法和本文提出的新方法进行了分析比较,说明了本文方法的优越性. In this paper, two new iterative methods were proposed to solve system of nonlinear equauons and the convergence was prove. Numerical examples were given to show that the proposed method is significantly improved compared with other iterative methods.
作者 余智伟 朱芳
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第3期465-467,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 非线性方程组 迭代公式 积分公式 收敛阶 systems of nonlinear equations iterative method quadrature formula fourth -order convergence
  • 相关文献

参考文献5

  • 1J.M.奥加特,W.C.莱因博尔特.多元非线性方程组迭代解法[M].北京:科学出版社.1983.
  • 2H. H. H. Homeier. On Newton - type Methods with Cubic Con- vergence[J]. Comput. Appl. Math. 2005, 176,425 -432.
  • 3M. Frontinl, E. Sormani. Third-order Methods from Quadra- ture Formulae for Solving Systems of Nonlinear Equations [ J ]. Applied Mathematics and Computation. 2004, 149,771 - 782.
  • 4M.T. Darvishi, A. Barati. A Third - order Newton - type Meth- od to Solve Systems of Nonlinear Equations[ J]. Applied Mathe- matics and Computation, 2007, 4, 187,630 - 635.
  • 5M.T. Darvishi, A. Barati. A Fourth - order Method from Quad- rature Formulae to Solve Systems of Nonlinear Equations [J]. Applied Mathematics and Computation, 2007, 188,257 - 261.

同被引文献43

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部