期刊文献+

深层卤水可采资源量评价的时间序列神经网络模型研究 被引量:2

Research on Time Series Neural Network Model of Recoverable Deep Brine Resources Evaluation
下载PDF
导出
摘要 深层地下卤水资源量的评价是国内外迄今尚未很好解决的课题,由于深部地质及水文地质参数难以准确获取,因此也难以对深层卤水资源量进行正确评价。从深层卤水开采量的时间序列出发,提出了一类基于神经网络的评价模型。首先分析了卤水开采量的时间序列特点,再建立了神经网络的拓扑结构,并设计了相应的评价算法,最后通过对某储卤构造的单井评价实例,对模型进行了验证。与传统的ARMA时间序列模型相比,其预测性能更好,对剩余可采资源量计算结果也更为准确。 Evaluation of the deep brine resources is an issue still unresolved worldwide. As it is difficult to obtain accurate deep geologic and hydrogeologic parameters, it is not easy to correctly evaluate the deep reserves of brine. Starting from the time series of deep brine production, this paper proposes an evaluation model based on neural network. The paper first analyzes the time series features of the brine production, and then establishes the topology of neural network and designs the evaluation algorithms. Finally, a single well of a construction of reservoir brine is evaluated, and the evaluation mode is verified. The predicted performance of neural network is better than that of the traditional ARMA time series model, and the calculation results of remaining recoverable resources are also more accurate.
出处 《国土资源科技管理》 北大核心 2012年第3期54-59,共6页 Scientific and Technological Management of Land and Resources
基金 中国地质调查局(资〔2010〕矿评01-25-03)
关键词 卤水 资源评价 时间序列 神经网络 brine resources evaluation time series neural network
  • 相关文献

参考文献11

二级参考文献40

共引文献171

同被引文献16

  • 1周训.试用有限单元法评价深层地下卤水资源量[J].地质论评,1990,36(4):376-380. 被引量:7
  • 2汪蕴璞 等.深层卤水形成问题及其研究方法[M].北京:地质出版社,1982.256-257.
  • 3Zharkov M A. Paleozoic salt-bearing formations of world [M]. Berlin: spring-verlag, 1984.
  • 4Zharkov M A. History of Paleozoic salt accumulation[M] Berlin: spring-verlag, 1981.
  • 5Scotese C R, Bambach R K, Barton C, Van der, Voo R, Zie gler A M. Palaeozoic base maps [J]. Geology, 1979,87 ( 3 ) 217-277.
  • 6汪蕴璞,等.油田古水文地质与水文地球化学-以冀中拗陷为例[M].北京:科学出版社,1987.
  • 7Zharkov M A. Paleozoic Salt-Bearing Formations of World [ M].Berlin:Spring-V erlag,1984.
  • 8Zharkov M A. History of Paleozoic Salt Accumulationf M]. Berlin:Spring-Verlag,1981.
  • 9Scotese C R,Bambach R K,Barton C,et al. Palaeozoic basemaps [J]. Geology,1979,87(3):217-277.
  • 10王永生,范洪达,尚崇伟,刘振.混沌时间序列的神经网络预测研究[J].海军航空工程学院学报,2008,23(1):21-25. 被引量:10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部