期刊文献+

Banach空间中一类序压缩映射的不动点定理 被引量:4

Fixed point theorems for a class of ordered contraction mapping in ordered Banach spaces
下载PDF
导出
摘要 在Banach空间中,利用迭代方法,研究了满足一定条件的序压缩算子的一些性质,获得了一类序压缩映射的不动点定理,证明了相应的结果,推广和改进了原有的结论,使其应用范围更加广泛. In Banach spaces, by using the iterative method, this paper studies the order contraction mapping, which satisfies some properties. Fixed point theorem8 for a class of ordered contraction mapping in Banach spaces are obtained and proved, which extends and improves the original results.
作者 卜香娟
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 2012年第3期333-341,共9页 Pure and Applied Mathematics
基金 陕西省自然科学基金(2012JM1017)
关键词 序BANACH空间 正规锥 不动点 序压缩算子 ordered Banach spaces, normal cone, fixed point, order contraction mapping
  • 相关文献

参考文献6

二级参考文献26

共引文献44

同被引文献47

  • 1许跟起.Banach空间有界线性算子强连续双半群[J].纯粹数学与应用数学,1995,11(1):78-85. 被引量:5
  • 2Menger K. Statistical metrics [J]. Proc. Nat. Acad. Sci. USA, 1942,28:535-537.
  • 3Chang S S, Cho Y J, Kang S M. Probabilistic Metric Spaces and Nonlinear Operator Theory [M]. Chengdu Sichuan University Press, 1994.
  • 4Cirid L. Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces [J] Nonlinear Anal., 2010,72:2009-2018.
  • 5Choudhury B S, Das K P. A new contraction principle in Menger spaces [J]. Acta. Math. Sin. (Engl. Set)., 2012,6:257-264.
  • 6Babaev N A. Nonlinear generalized contraction on Menger PM-spaces [J]. Appl. Anal. Discrete Math., 2008,23:1379-1386.
  • 7Jachymski J. On probabilistic φ-contractions on Menger spaces [J]. Nonlinear Anal., 2010,73:2199-2203.
  • 8Ciri6 L, Mihet D, Saadati R. Monotone generalized Cdntractions in partially ordered probabilistic metric spaces [J]. Topology Appl., 2009,156:2838-2848.
  • 9Fang J X, Gao Y. Common fixed point theorems under strict contractive conditions in Menger spaces [J]. Nonlinear Anal., 2009,70:184-193.
  • 10Fang J X. Common fixed point theorems of compatible and weakly compatible maps in Menger spaces [J]. Nonlinear Anal., 2009,71:1833-1843.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部