期刊文献+

图像重建中total variation正则化项的有限元计算方法

Finite element computation method of total variation regularization term in image reconstruction
下载PDF
导出
摘要 为在迭代图像重建算法中获得更高质量的重建图像,推导出TV(Total Variation)正则化项关于重建图像的Fréchet导数,并给出该导数的有限元表示;利用两个数值实验,分别采用不同的网格尺寸和不同的形函数验证该有限元表示结果.数值实验结果表明:采用相同的k次单纯形元时,随着网格不断加密,计算结果的L1和L2误差均下降;采用相同的网格时,线性单纯形元函数计算结果明显优于分片常数有限元和二次单纯形元计算结果. To get high quality reconstructed image in iterative algorithm of image reconstruction, the Frechet derivative of Total Variation (TV) regularization term with respect to reconstructed image is derived and then it is represented by finite element. The performance of the finite element representation is tested with two numerical experiment examples, into which different mesh sizes and different shape functions are introduced. The numerical experiment results show that, with the same k-th simplex shape element, L1 and L2 errors of the calculation results both decrease with the enhancement of mesh refinement degree; with the same mesh, the calculation results using linear simplex shape element are much better than the results using piecewise constant finite element and 2-nd simplex shape element.
作者 王彩芳
出处 《计算机辅助工程》 2012年第3期49-52,56,共5页 Computer Aided Engineering
基金 上海海事大学校科研基金(20110054)
关键词 图像重建 迭代算法 TOTAL variation正则化 Fréchet导数 单纯形元 有限元 image reconstruction iterative algorithm total variation regularization Frechet derivative simplex shape element finite element
  • 相关文献

参考文献1

二级参考文献25

  • 1J. Beuthan, C. Mahnke, U. Netz, O. Minetb and G. M/iller, Optical molecular imaging: Overview and technological aspects,Medical Laser Application, 17:1 (2002), 25-30.
  • 2D. Leff, O. Warren, L. Enfield, A. Gibson, T. Athanasiou, D. Patten, J. Hebden, G. Yang and A. Darzi, Diffuse optical imaging of the healthy and diseased breast: A systematic review, Breast Cancer Research and Treatment, 108:1 (2008), 9-22.
  • 3S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. van der Mark, P. Luijten and W. Mall, Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging, European Radiology, 19:5 (2009), 1108-1113.
  • 4A. Scheel, M. Backhaus, A. Klose, B. Moa-Anderson, U. Netz, K. Hermann, J. Beuthan, G. Muller, G. Burmester and A. Hielscher, First clinical evaluation of sagittal laser optical tomography for detection of synovitis in arthritic finger joints, Annals of the Rheumatic Diseases, 64:2 (2005), 239-245.
  • 5T. Austin, A. Gibson, G. Branco, R. Yusof, S. Arridge, J. Meek, J. Wyatt, D. and Delpy and J. Hebden, Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain, Neuroimage, 31:4 (2006), 1426-1433.
  • 6H. Dehghani, B. White, B. Zeff, A. Tizzard and J. Culver, Depth sensitivity and image reconstruc- tion analysis of dense imaging arrays for mapping brain function with diffuse optical tomography, Applied Optics, 48:10 (2009), D137-D143.
  • 7S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15:2 (1999), R41-R93.
  • 8A. Gibson, J. Hebden and S. Arridge, Recent advances in diffuse optical imaging, Physics in Medicine and Biology, 50:4 (2005), R1-R43.
  • 9V. Markel and J. Schotland, Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas, Journal of the Optical Society of America A. Optics, Image Science, and Vision, 18:6 (2001), 1336-1347.
  • 10V. Markel and J. Schotland, Inverse problem in optical diffusion tomography. II. Role of boundary conditions, Journal of the Optical Society of America A. Optics, Image Science, and Vision, 19:3 (2002), 558-566.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部