期刊文献+

L1正则化Logistic回归在财务预警中的应用 被引量:10

L1-regularized Logistic Regression Modeling for Financial Distress Prediction
下载PDF
导出
摘要 线性模型和广义线性模型已广泛地用于社会经济、生产实践和科学研究中的数据分析和数据挖掘等领域,如公司财务预警,引入L1范数惩罚技术的模型在估计模型系数的同时能实现变量选择的功能.本文将L1范数正则化Logistic回归模型用于上市公司财务危机预报,结合沪深股市制造业ST公司和正常公司的T-2年财务数据开展实证研究,对比Logistic回归和L2正则化Logistic回归模型进行对比分析.实验结果表明L1正则化Logistic回归模型的有效性,其在保证模型预测精度的同时提高模型的解释性. The linear model and the generalized linear model are widely employed in data analysis and data mining in social economic and scientific research,such as Financial Distress Prediction. If L1 norm penalty is added with model parameters, It can achieve feature selection at the same time when the model coefficients are estimated. L1 norm penalized logistic regression model is proposed for financial distress prediction with listed companies in this paper. Together with normal logistic regression and L2 norm penalized logistic regression model, three logistic regression models are built and tested on the two-years-before data from ST companies and normal counterparts in China security market . The results demonstrate the performance of L1 norm penalized logistic regression model. The model can achieve better prediction accuracy and explanation ability.
出处 《经济数学》 2012年第2期106-110,共5页 Journal of Quantitative Economics
基金 国家自然科学基金项目(61065003) 教育部人文社会科学研究青年基金项目(10YJC630379) 江西省自然科学基金项目(2010GZS0034) 江西省教育厅科技项目(GJJ10446)
关键词 财务预警 L1范数惩罚 正则化技术 逻辑回归 financial distress predictionl Ll-norm penalty regularization technology logistic regression
  • 相关文献

参考文献9

  • 1吴世农,卢贤义.我国上市公司财务困境的预测模型研究[J].经济研究,2001,36(6):46-55. 被引量:1088
  • 2吴冬梅,朱俊,庄新田,杨霖.基于支持向量机的财务危机预警模型[J].东北大学学报(自然科学版),2010,31(4):601-604. 被引量:17
  • 3杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:202
  • 4王宝富,李南.财务困境的预测研究[J].南京航空航天大学学报(社会科学版),2007,9(3):61-64. 被引量:5
  • 5Robert TIBSHIRANIT. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 1996,Series B (Methodological), 58(1) : 267 -288.
  • 6Wen-jlang FU. Penalized regressions:the bridge versus the lasso[J]. Journal of Computational and Graphical Statistics, 1998, 7(3): 397-416.
  • 7Tong ZHANG. On the dual [ormulation of regularized linear systems[J]. Machine Learning, 2002, 46 (1):91-129.
  • 8A GENKIN D, D LEWIS, D MADIGAN. Large-scale Bayesian logistic regression for text categorization[J]. Technometrics, 2007, 49 (3): 291-304.
  • 9S BALAKRISHNAN, D MADIGAN. Algorithms for sparse linear classifiers in the massive date setting[J]. Journal of Machine Learning research, 2008,9 (6):313-337.

二级参考文献16

  • 1吴世农,黄世忠.企业破产的分析指标和预测模型[J].中国经济问题,1987(6):8-15. 被引量:123
  • 2林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 3徐晓燕,王昱,张斌.一种集成logistic回归与支持向量机的判别分析规则[J].系统工程理论与实践,2007,27(4):41-46. 被引量:13
  • 4Beaver W H. Financial ratios as predictors of failure [ J ]. Journal of Accounting Research, 1966,4( 1 ) : 71 - 102.
  • 5Altman L. Financial ratios, discriminate analysis and prediction of corporate bankruptcy[J]. Journal ofFinance, 1968,23(9):589 - 609.
  • 6Ohlson J A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18 (1):109-131.
  • 7Zmijewski M E. Methodological issues related to the estimated of financial distress prediction models [ J ]. Journal of Accounting Research, 1984,22( 1 ) : 59 - 82.
  • 8Fan A, Palaniswami M. Selecting bankruptcy predictors using a support vector machine approach [ C] //Proceedings of the International Joint Conference on Neural Network. Como: IEEE-INNS-ENNS, 2000:345 - 352.
  • 9Tay F E H, Gao L. Application of support vector machines in financial time series forecasting [ J ]. Omega, 2001,29 ( 3 ) : 309 - 317.
  • 10[4]Cortes C,Vapnik V.Support Vector Networks[J].Machine Learning,1995,20:273-297.

共引文献1251

同被引文献107

引证文献10

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部