期刊文献+

两类有向图的正交因子分解 被引量:2

Orthogonal Factorization for Two Classes of Digraph
下载PDF
导出
摘要 研究了两类有向图的正交因子分解问题,得到如下结论:1)设G是(mg+nk,mf-nk)-有向图,其中1≤n<m,H是G的任意一个有nk条边的有向子图,其中g≥k≥1.则G中存在子图R,R具有(g,f)-因子分解k-正交于H;2)设G是(0,mf-m+1)-有向图,则对G中任意给定的有向2m-星K1,2m,G有一个(0,f)-因子分解2-正交于K1,2m. After studying orthogonal factorization for two classes of digraph,the results are: 1) Let G be a(mg+nk,mf-nk)-digraph,where 1≤n〈m.H is a subdigraph of G with nk edges and g≥k≥1,then there is subdigraph R of G,and R has a(g,f)-factorization k-orthogonal to H;2) there exists(0,f)-factorization orthogonal to any 2m-star K1,2m in a(0,mf-m+1)-digraph.
作者 晏立 高炜
出处 《昆明学院学报》 2012年第3期51-54,共4页 Journal of Kunming University
基金 国家自然科学基金资助项目(60903131) 教育部科学技术研究重点资助项目(210210) 民族教育信息化教育部重点实验室资助项目
关键词 有向图 因子 正交 因子分解 digraph factor orthogonal factorization
  • 相关文献

参考文献8

  • 1CENSOR Y,ELFVING T. A multi-projection algorithm using Bregmam projections in a product space[J].Numerical Algorithms,1994.221-239.
  • 2BYRNE C. Iterative oblique projection onto convex subsets the split feasibility problem[J].Inverse Problems,2002.441-453.
  • 3CENSOR Y,BORTFELD T,MARTI'IN B. A unified approach for inversion problem in intensity-modulated radiation therapy[J].Physics in Medicine and Biology,2006.2353-2365.
  • 4CENSOR Y,E LFVING T,KOPF N. The mulitiple-sets split feasibility problem and its applications[J].Inverse Problems,2005.2071-2084.
  • 5CENSOR Y,MOTOVA A,SEGAL A. Pertured projections and subgradient projections for the multiple-sets split feasibility problem[J].Journal of Mathematical Analysis and Applications,2007.1244-1256.
  • 6MOUDAFI A. A note on the split common fixed-point problem for quasi-nonexpansive operators[J].Nonlinear Analysis-Theory Methods and Applications,2011.4083-4087.
  • 7AOYAMA K,KIMURA W,TAKAHASHI W. Approxiimation of common fixed points of accountable family of nonexpansive mapping on a Banbch space[J].Nonlinear Analysis-Theory Methods and Applications,2007.2350-2360.
  • 8OPIAL Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J].Bull Am Mayh Soc,1967.591-597.

同被引文献12

  • 1原晋江,余金桥.随机(m,r)-正交的(g,f)-可因子化图[J].高校应用数学学报(A辑),1998,13(3):311-318. 被引量:15
  • 2Bondy J A,Murty U S R. Graph Theory with Applica-tions [ M]. London :The Macmillan Press, 1976.
  • 3WANG C. Subgraphs with orthogonal factorizations ofdigraphs [ J ]. European Journal of Combinatorics,2012,33:1015 -1021.
  • 4Yeh W C, Lin Y C, Chung Y Y. Performance analysisof cellular automata Monte Carlo simulation for estima-ting network reliability [J]. Expert Systems with Appli-cations ,2010,37(5) :3537 -3544.
  • 5GALLAI T. Maximum-minimum satze and verallgemeinerte factoren yon graphen[ J]. Acta Math Acad Sci Hungar, 1961,12 : 131 - 173.
  • 6LIU G. Orthogonal factorizations of digraphs [ J ]. Front Math China, 2009,4(2) :311 -323.
  • 7WANG C. Subdigraphs with orthogonal factorizations of digraphs[ J].European Journal of Combinatorics ,2012,33 : 1015 - 1021.
  • 8李国君,刘桂真.与任意图正交的(g,f)-因子分解[J].中国科学(A辑),1997,27(12):1083-1088. 被引量:33
  • 9令狐荣涛,武慧虹.Cayley图的齐次因子分解的构造[J].四川师范大学学报(自然科学版),2012,35(3):322-326. 被引量:3
  • 10肖岚,刘岩.(0,mf-k+1)-图中具有正交(0,f)-因子分解的子图(英文)[J].运筹学学报,2012,16(3):132-138. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部