期刊文献+

LSSVM算法在极化SAR影像分类中的应用 被引量:4

Research on Polarimetric SAR Image Classification Based on Least Squares Support Vector Machine
下载PDF
导出
摘要 最小二乘支持向量机(LSSVM)是针对标准支持向量机(SVM)算法训练时间长的问题而提出的一种改进算法。针对SVM算法在极化SAR影像分类时存在效率较低的问题,以目标分解理论为基础,对LSSVM算法应用于极化SAR影像分类的有效性进行了研究。结果表明,对于极化SAR影像分类,LSSVM算法与SVM算法的分类精度相当,但时间效率远优于SVM算法,并且对参数的调整也具有更好的稳定性,同时泛化能力良好。 The LSVM algorithm was put forward for the inherent shortcomings of long training time that standard support vector machine algorithm has.In order to solve the efficiency problem that the SVM algorithm has in supervised classification for the polarimetric SAR images,based on the target decomposition theory,we used the LSVM algorithm to do supervised classification for the polarimetric SAR images and tested the effectiveness of this algorithm for the classification of the polarimetric SAR images.The experiment shows that,in the polarimetric SAR image classification applications,the LSSVM algorithm can be quite the classification accuracy with SVM,and though the efficiency and accuracy comparison find that the LSSVM algorithm has a faster speed and better stability,and has a better generalization ability.
出处 《地理空间信息》 2012年第3期43-45,4,共3页 Geospatial Information
基金 国家863计划资助项目(2011AA120404)
关键词 极化合成孔径雷达 LSSVM 分类 Polarimetric SAR,LSSVM,classification
  • 相关文献

参考文献10

  • 1郭华东.雷达对地观测理论与应用[M]北京:科学出版社,2000.
  • 2周晓光,匡纲要,万建伟.极化SAR图像分类综述[J].信号处理,2008,24(5):806-812. 被引量:25
  • 3Vapnik V. Statistical Learning Theory[M].New York:wiley,1998.
  • 4Vapnik V. The Nature of Statistical Learning Theory[M].Springer-verlag,1995.
  • 5邓乃扬;田荚杰.数据挖掘中的新方法一支持向量机[M]北京:科学出版社,2004.
  • 6Fukuda S,Hirosawa H. Support Vector Machine Classification of Land Cover: Application to Polarimetric SAR Data[A].Sydney,Austrilia,2001.187-189.
  • 7李国正;王猛;曾华军.支持向量机导论[M]北京:电子工业出版社,2005.
  • 8K suykens J.A,Vandewalle J. Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999.293-300.
  • 9蔡大用.数值代数[M]北京:清华大学出版社,1997.
  • 10Pottier E,Saillard J. On Radar Polarization Target Decomposition Theorems with Application to Target Classification by Using Network Method[M].york,England,1991.265-268.

二级参考文献61

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2徐俊毅,杨健,彭应宁.双波段极化雷达遥感图像分类的新方法[J].中国科学(E辑),2005,35(10):1083-1095. 被引量:9
  • 3Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[ J ] . IEEE Trans. Geosci. Remote Sensing. 2005,43 ( 8 ) : 1699-2005.
  • 4Touzi R. Target scattering decomposition in terms of rollinvariant target parameters [ J ]. IEEE Trans. Geosci. Remote Sensing. 2007,45 ( 1 ).
  • 5Pottier E, Cloude S R. Application of the H/A/α polarimetric decomposition theorems for land classification [ A ]. In : Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry [ C ], San Diego, CA, USA, 1997 : 132-143.
  • 6Qong M. Scattering mechanism identification based on the rotation and eccentric angles of polarimetric SAR data [ A ]. In : Proc. IGARSS' 04 [ C ], Anchorage, AK, USA, 2004 : 3054 -3057.
  • 7Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data [ J ]. IEEE Trans. Geosci. Remote Sensing. 1998,36 ( 3 ) : 963- 973.
  • 8Pierce L E, Ulaby F T, Sarabandi K, et al. Knowledgebased classification of polarimetric SAR images [ J ]. IEEE Trans. Geosci. Remote Sensing. 1994,32 (5) : 1081-1086.
  • 9Aiazzi B, Alparone L, Baronti S, et al. Land cover ctassfication of built-up areas through enhanced fuzzy nearest-mean reclustering of textural features from X- and C-band polarimetric SAR data [ A ]. In: Proc. SPIE Conference on SAR Image Analysis, Modeling, and Techniques VI [ C ] ], Bellingham, WA, USA ,2004 : 105-115.
  • 10Jin Y Q, Xu F. A new set of the parameters for the terrain surface classification in polarimetric SAR image based on deorientation of polarimetric scattering vector [ A ]. In: Proc. IGARSS' 06, Denver, CO, USA, 2006 : 1403-1406.

共引文献24

同被引文献46

  • 1吴永辉,计科峰,郁文贤.利用SVM的全极化、双极化与单极化SAR图像分类性能的比较[J].遥感学报,2008,12(1):46-53. 被引量:16
  • 2齐保林,李凌均,李志农.基于支持向量机的故障模式识别研究[J].郑州大学学报(工学版),2007,28(1):9-11. 被引量:6
  • 3张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J].计算机学报,2007,30(3):483-490. 被引量:21
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Xiaofeng Liu,Lin Bo,Xingxi He,Martin Veidt.Application of correlation matching for automatic bearing fault diagnosis[J].Journal of Sound and Vibration.2012(26)
  • 6Huaqing Wang,Peng Chen.Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network[J].Computers & Industrial Engineering.2010(4)
  • 7Xiaodong Wang,Yanyang Zi,Zhengjia He.Multiwavelet denoising with improved neighboring coefficients for application on rolling bearing fault diagnosis[J].Mechanical Systems and Signal Processing.2010(1)
  • 8Schmidt K S, Skidmore A K.Spectral Discrimination of Vegetation Types in a Coastal Wetland[J].Remote Sensing of Environment,2003,85 (1): 92-108.
  • 9Cloude S R.,Pottier E.An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
  • 10Cao F,Wen H,Wu Y.An Unsupervised Segmentation with an Adaptive Number of Clusters Using the SPAN/H/ot/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis [J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):296-299.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部