期刊文献+

图书馆机器人机械手参数自整定模糊PID控制器设计 被引量:14

Design of a parameter self-tuning fuzzy-PID controller of a library robot manipulator
下载PDF
导出
摘要 采用PC/104系列板卡设计了一款嵌入式图书馆机器人气动机械手控制器,对机械手的参数自整定模糊PID控制算法进行了重点探讨,根据模糊子集的隶属度赋值表和模糊逻辑规则,查模糊矩阵表得出修正参数,完成对PID参数的在线自校正.用Microsoft eMbedded Visual C++(EVC)编程实现了图书取放气动机械手的智能控制,给出了控制软件算法流程及关键部分实现方法.用阶跃、正弦等典型输入信号做系统仿真,实验结果表明气动机械手能够快速、稳定、几乎无误差地跟踪系统给定值.所提出的系统设计方法对类似领域具有普遍适用性. An embedded controller for the pneumatic manipulator of a library robot was designed using the PC/104 boards system. The parameters of a self-tuning fuzzy-PID controller algorithm were the emphasis of the design. According to the valuation table of membership and the fuzzy logic rules of the fuzzy subsets, the modified parameters were drawn by searching the fuzzy matrix table ; thus the parameters' online self-tuning of the fuzzy-PID algorithm was finished. The intelligent control of the pneumatic manipulator of a library robot was realized by programming using Microsoft eMbedded Visual C ++ (EVC). The algorithm flow diagram of the control software and the key method were given. The simulation was finished by inputting some typical signals such as the phase step and sine signal. The experimental result shows that the pneumatic manipulator of a library robot can quickly trace the target value and keep a satisfactory stability with nearly no errors. The designed method put forward in this paper has a generic application relationship to similar fields.
出处 《智能系统学报》 北大核心 2012年第2期161-166,共6页 CAAI Transactions on Intelligent Systems
基金 北京市属高等学校人才强教计划资助项目(PHR201107149) 中青年骨干教师计划资助项目(PHR201008318)
关键词 模糊PID PC/104 气动机械手 图书馆机器人 控制器 fuzzy-PID controller PC/104 pneumatic manipulator library robot parameter self-tuning
  • 相关文献

参考文献2

二级参考文献11

  • 1FIERRO R, LEWIS F L. Control of a nonholonomic mobile robot using neural networks [ J ]. IEEE Transactions on Neural Networks, 1998,9(4) :589-600.
  • 2KANAYAMA Y, KIMURA Y, MIYAZAKI F, et al. A sta- ble tracking control method for an autonomous mobile robot [C]//Proceedings of the 1990 IEEE International Confer- ence on Robotics and Automation. Cincinnati, USA, 1990 : 384-389.
  • 3JIANG Z P, NIJMEIJER H. Tracking control of mobile robots:a case study in baekstepping [ J]. Automatica, 1997, 33(7 ) : 1393-1399.
  • 4FUKAO T, NAKAGAWA H, ADACHI N. Adaptive tracking control of a nonholonomic mobile robot [ J ]. IEEE Transactions on Robotics and Automation, 2000, 16 ( 5 ) : 609-615.
  • 5DONG W, KUHNERT K D. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties [ J ]. IEEE Transactions on Robotics, 2005,21 (2) : 261-266.
  • 6PARK B S, YOO S J, PARK J B, et al. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty [ J ]. IEEE Transactions on Control Systems Technology, 2009,17 ( 1 ) : 207-214.
  • 7DAS T, KARI N. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots [J ]. IEEE Transactions on Control Systems Technology, 2006, 14(3) :501-510.
  • 8YUAN G, YANG S X, MITLAL G S. Tracking control of a mobile robot using a neural dynamics based approach [C]// Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea, 2001 : 163-168.
  • 9LIU S R, ZHANG H D, YANG S X, et al. Dynamic control of a mobile robot using an adaptive neurodynamics and sliding mode strategy [ C ]//Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 2004:5007-5011.
  • 10GROSSBERG S. Nonlinear neural networks: principles, mechanisms, and architectures [ J ]. Neural Networks, 1988,1 ( 1 ) : 17-61.

共引文献15

同被引文献163

引证文献14

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部