摘要
在这篇论文中,作者应用非光滑分析理论把Willem建立的对偶喷泉定理推广到非光滑情形,即非光滑型对偶喷泉定理.作为该定理的应用,作者研究带有凹凸非线性项的Dirichlet型微分包含问题的多解性.
In this paper we establish a nonsmooth version of dual Fountain theorem by adopting the framework of nonsmooth analysis theory, which is a generalization of Theorem 3.18 of [16]. Then we present an application of this Theorem to a Dirichlet-type differential inclusion problem involving concave and convex nonlinearities.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2012年第3期530-539,共10页
Acta Mathematica Scientia
基金
国家自然科学基金(10971087)
西北师范大学青年基金(NWNU-LKQN-10-21)资助
关键词
非光滑分析
对偶喷泉定理
微分包含问题
凹凸非线性项.
Non-smooth analysis
Dual Fountain theorem
Differential inclusion problem
Concave and convex nonlinearities.