期刊文献+

修正的Helmholtz方程未知源识别反问题 被引量:2

The Inverse Problem of Identifying the Unknown Source for the Modified Helmholtz Equation
下载PDF
导出
摘要 探讨半带状区域上二维修正的Helmholtz方程只含有一个空间变量的未知源识别反问题.这类问题是不适定的,即问题的解(如果存在的话)不连续依赖于测量数据.利用拟可逆正则化方法,得到问题的一个正则近似解,并且给出正则解和精确解之间收敛的误差估计.数值实验表明拟可逆正则化方法对于这种未知源识别非常有效. This paper discusses the inverse problem of determining a spacewise unknonwn source for the two dimensional modified Helmholtz equation in a half strip domain. This problem is ill-posed, i.e., the solution does not depend continuously on the data. A regularization solution of the inverse problem is obtained by the quasi-reversibility regularization method. For the regularization solution, convergence estimate is obtained between the regularization solution and the exact solution. The numerical example shows that the quasi-reversibility regularization method works effectively for identification of the unknown source.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2012年第3期557-565,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(10671085) 兰州理工大学优秀青年基金(Q2010015)资助
关键词 修正的Helmholtz方程 未知源 正则化 拟可逆. Modified Helmholtz equation Unknown source Regularization Quasi-reversibility.
  • 相关文献

参考文献18

  • 1王彦飞.反演问题的计算方法及其应用[M]北京:高等教育出版社,2007.
  • 2Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation[J].Applied Mathematics and Computation,2006.566-581.
  • 3Yi Z,Murio D A. Source term identification in 1-DIHCP[J].Computers and Mathematics with Applications,2004.1921-1933.
  • 4Farcas A,Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable[J].Journal of Engineering Mathematics,2006.375-388.
  • 5Johansson T,Lesnic D. Determination of a spacewise dependent heat source[J].Journal of Computational and Applied Mathematics,2007.66-80.
  • 6Yan L,Fu C L,Yang F L. The method of fundamental solutions for the inverse heat source problem[J].Engineering Analysis With Boundary Elements,2008.216-222.
  • 7Cheng H W,Huang J F,Leiterman T J. An adaptive fast solver for the modified Helmholtz equation in two dimensions[J].Journal of Computational Physics,2006.665-674.
  • 8Engl H W,Hanke M,Neubauer A. Regularization of Inverse Problem[M].Boston,MA:Kluwer Academic Publishers,1996.
  • 9Kirsch A. An Introduction to the Mathematical Theory of Inverse Problem[M].New York:springer-verlag,1996.
  • 10Eldén L. Approximations for a Cauchy problem for the heat equation[J].Inverse Problems,1987.263-273.

二级参考文献14

  • 1李功胜,谭永基.A CONDITIONAL STABILITY FOR AN INVERSE PROBLEM ARISING IN GROUNDWATER POLLUTION[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2005,14(3):217-225. 被引量:7
  • 2冯立新,屈彦呈.Poisson方程反问题的惟一性和稳定性[J].中国科学(A辑),2007,37(5):595-604. 被引量:2
  • 3Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Applied Mathematics and Computation, 2006, 173:566-581.
  • 4Yi Z, Murio D A. Source term identification in 1 -D IHCP. Computers and Mathematics with Applications, 2004, 47:1921-1933.
  • 5Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. Journal of Engineering Mathematics, 2006, 54:375-388.
  • 6Johansson T, Lesnic D. Determination of a spacewise dependent heat source. Journal of Computational and Applied Mathematics, 2007, 209:66-80.
  • 7Yan L, Fu C L, Yang F L. The method of fundamental solutions for the inverse heat source problem. Engineering Analysis with Boundary Elements, 2008, 32:216- 222.
  • 8Kirsch A. An Introduction to the Mathematical Theory of Inverse Problem. New York: Springer, 1996.
  • 9Carrasso A. Determining surface temperature from interior observations. SIAM Journal of Application Mathematics, 1982, 42:558 574.
  • 10Fu C L. Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. Journal of Computational and Applied Mathematics, 2004, 167:449-463.

共引文献5

同被引文献25

  • 1Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Applied Mathematics and Computation, 2006, 173:566-581.
  • 2Z, Murio D A. Source term identification in 1 - D IHCP. Computers and Mathematics with Applications, 2004, 47:1921-1933.
  • 3Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable. Journal of Engineering Mathematics, 2006, 54:375-388.
  • 4Johansson T, Lesnic D. Determination of a spacewise dependent heat source. Journal of Computational and Applied Mathematics, 2007, 209:66 -80.
  • 5Yah L, Fu C L, gang F L. The method of fundamental solutions for the inverse heat source problem. Engineering Analysis with Boundary Elements, 2008, 32:216-222.
  • 6Cheng H W, Huang J F, Leiterman T J. An adaptive fast solver for the modified Helmholtz equation in two dimensions. Journal of Computational Physics, 2006, 211:665-674.
  • 7Yang F, Guo H Z, Li X X. The simplified tikhonov regularization method for identifying the unknown source for the modified heimholtz equation. Mathematical Problem in Engineer, 2011, 2011:1-14.
  • 8Eldn L, Berntsson F, Regihska T. Wavelet and Fourier methods for solving the sideways heat equation. SIAM Journal on Scientific Computing, 2000, 21:2187-2205.
  • 9Xiong X T, Fu C L, Li H F. Fourier regulariz'ation method of a sideways heat equation for determining surface heat flux. Journal of Mathematical Analysis and Applications, 2006, 317:331 -348.
  • 10h C L, Feng X L, Qian Z. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation. Applied Numerical Mathematics, 2009, 59:2625-2640.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部