摘要
第二类曲线积分的计算在微积分学中是一个难点,其中概念既多又抽象,计算既繁又难以判断;而在研究生入学考试的命题中,曲线积分的出题率却又非常高,同时又伴随着题目难度大、解题正确率低的现象。但是,若将格林公式进行转化,就可得到平面第二类曲线积分计算的一种简便方法。它无需更多的判别就可直接进行计算,给正确理解、准确计算平面第二类曲线积分提供了一种思路。
The second type of curve integral is a hard nut to crack in the calculus. It is otten assoclatea with abstract concepts, difficult calculations and judgements. But in the national entrance examination for postgraduate, this kind of difficult calculation often appears and few students can gain the marks. A simple method to calculate the second type of curve integral is established by transforming the Green formula. By using this method, the students can calculate the curve integral directly instead of complex judgement. So this method offers another way to understand the curve integral of second category and solve the concerning problems correctly.
出处
《浙江科技学院学报》
CAS
2012年第3期185-189,共5页
Journal of Zhejiang University of Science and Technology
基金
浙江科技学院教学研究项目(2009ⅡB-a53)
关键词
第二类曲线积分
连通区域
一阶连续偏导数
正向曲线
格林公式
integral curve of the second category
regional connectivity
first-order consecutivepartial derivatives
forward curve
Green formula