期刊文献+

随机波动模型下定价方差互换的一类控制变量 被引量:2

A Class of Control Variates for Pricing Variance Swap under Stochastic Volatility Models
原文传递
导出
摘要 本文从风险中性定价的角度出发,给出了在随机波动模型下定价方差互换的一类控制变量,从而大大提高了使用蒙特卡罗方法计算方差互换价格时的效率,并在波动率的平方满足几何布朗运动(GBM)和波动率满足Ornstein-Uhlen-beck(OU)过程这两种随机波动情况下给出了控制变量的具体形式。特别对于GBM型随机波动模型,可以得到一系列控制变量,从而进行多元控制。 In this paper, we provide a class of control variates for pricing variance swap under stochastic volatility models using the risk-neutral pricing formula. When the square of volatility satisfies geometric brownian motion (GBM) and the volatility satisfies Ornstein-Uhlenbeck (OU) process, we give the idiographic control variates. In particular, for the GBM type model, we can provide a class of variates, which allow us to perform multiple controls.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2012年第7期148-160,F0003,共14页 Journal of Quantitative & Technological Economics
基金 上海财经大学"211工程"三期重点学科建设项目 上海财经大学青年教师预研究项目(2011220656) 上海财经大学研究生科研创新基金项目(CXJJ-2011-395)的资助 教育部科技创新重大项目培育资金项目(2009-2012 708040)
关键词 蒙特卡罗模拟 方差缩小 控制变量 风险中性 Monte Carlo Variance Reduction Control Variate Risk Neutral
  • 相关文献

参考文献1

二级参考文献12

  • 1Broadie P, Glasserman P. Monte Carlo methods for securities pricing[J]. Journal of Economic Dynamic and Control, 1997, 21:1263-1321.
  • 2Bratley P. A Guide to Simulation[M]. Berlin:Springer, 1983. 438-471.
  • 3Broadie M Detemple. Recent advances in numerical methods for pricing derivative securities[ A ]. Numerical Methods in Finance[M]. Cambridge: Cambridge University Press, 1997. 170-229.
  • 4Boyle P. A Monte Carlo approach[J]. Journal of Financial Economics, 1977, 4: 328-338.
  • 5Owen A. Safe and Effective Importance Sampling[R]. Technique Report, Standford: Standford University Press, 1998. 210-242.
  • 6Veach E, Guiba P. Optimally Combining Sampling Technique for Monte Carlo Rendering[C]. Los Angeles: In SIGGRAPH' 1995 Conference Proceeding, 1995. 172-210.
  • 7Aiworth P, Broadie M, Glasserman P. Monte Carlo and Quasi-Monte Carlo Methods for Scientific Computing[M]. New York:Springer-Verlag, 1997. 211-240.
  • 8Duffle D. Efficient Monte Carlo simulation of security prices[J]. Annals of Applied Probability, 1995, 5: 897-905.
  • 9Glasserman P, Gaussian P. Importance Sampling and Stratification: Computation Issuer[ C]. Proceeding of the 1998 Winter Simulation Conference, New York: IEEE Press, 1998. 685-693.
  • 10Fournie E, Lasry J. Ntnerical Methods in Finance[M]. Cambridge: Cambridge University Press, 1999. 321-370.

共引文献16

同被引文献33

  • 1马俊,陈学煌.基于DSP的多路数据采集系统设计[J].电子技术应用,2007,33(12):79-81. 被引量:21
  • 2Brockhaus O, Long D. Volatility swaps made simple[J]. Risk, 2000, 2(1) : 92 -96.
  • 3Broadie M, Jain A. Pricing and hedging volatility derivatives[J]. The Journal of Derivatives, 2008, 15(3) : 7 -24.
  • 4Carr P, Lee R. Hedging variance options on continuous semimartingales [ J ]. Finance and Stochastics, 2010, 14 (2) : 179 - 207.
  • 5Kallsen J, Muhle-Karbe J, Vob M. Pricing options on variance in affine stochastic volatility models [ J ]. Mathematical Fi- nance, 2011, 21(4) : 627 -641.
  • 6Broadie M, Jain A. The effect of jumps and discrete sampling on volatility and variance swaps [ J ]. International Journal of Theoretical and Applied Finance, 2008, 11 (8) : 761 -797.
  • 7Lian G. Pricing volatility derivatives with stochastic volatility[ D]. Wollongong: University of Wollongong, 2010.
  • 8Zhu S, Lian G. A closed-form exact solution for pricing variance swaps with stochastic volatility[ J ]. Mathematical Finance, 2011,21(2) : 233 -256.
  • 9Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options [ J ]. The Review of Financial Studies, 1993, 6(2) : 327 -343.
  • 10Zheng W, Kwok Y K. Closed form pricing formulas for discretely sampled generalized variance swaps[ J]. Mathematical Fi- nance, 2014, 24(4) : 855 -881.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部