期刊文献+

基于D-FNN的聚合过程转化速率软测量建模及重构 被引量:2

Soft-sensor modeling and reconfiguration of conversion velocity in PVC polymerization process based on D-FNN
下载PDF
导出
摘要 引言以氯乙烯单体(VCM)为原料,采用悬浮法聚合工艺生产聚氯乙烯(PVC)树脂是一种典型的间歇式化工生产过程。VCM的转化率对PVC树脂产品质量有很大影响, For forecasting the key technology indicator conversion velocity of vinyl chloride monomer(VCM)in the polyvinylchloride(PVC)polymerization process,a soft-sensor modeling method based on dynamic fuzzy neural network(D-FNN)was proposed.Firstly,kernel principal component analysis(KPCA)method was adopted to select the auxiliary variables of soft-sensing model in order to reduce the model dimensionality.Then the learning algorithm of D-FNN included the rule extraction principles,the classification learning strategy,the precedent parameters arrangements,the rule trimming technology based on error descendent ratio and the consequent parameters decision based on extended Kalman filter(EKF).The proposed soft-sensor model could automatically decide the fuzzy rules so as to realize the nonlinear mapping between input and output variables of the discussed soft-sensor model.Model migration method was adopted to realize the on-line adaptive revision and reconfiguration of soft-sensor model.In the end,simulation results showed that the proposed model could significantly enhance the prediction accuracy and robustness of the technico-economic indices and satisfy the real-time control requirements of PVC polymerization process.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第7期2163-2169,共7页 CIESC Journal
基金 中国博士后科学基金面上项目(20110491510) 辽宁省优秀人才计划项目(LJQ2011027)~~
关键词 聚合过程 动态模糊神经网络 核主元分析 软测量 模型迁移 polymerize process dynamic fuzzy neural network kernel principal component analysis soft-sensor model migration
  • 相关文献

参考文献5

二级参考文献46

共引文献83

同被引文献38

  • 1万银,刘丁,任俊超,刘聪聪.基于栈式自编码网络的直拉硅单晶生长过程V/G软测量建模[J].仪器仪表学报,2020(10):277-286. 被引量:2
  • 2褚燕彬,曹柳林,王晶.利用组合B样条神经网络实现对间歇反应过程的动态建模[J].化工学报,2011,62(S1):157-162. 被引量:2
  • 3陈彦泽,丁信伟,喻建良.重力热管振荡传热特性RBF神经网络动态建模[J].化工学报,2005,56(5):890-893. 被引量:8
  • 4Kishor N,Singh S P. Nonlinear predictive control for aNNARX hydro plant model [J]. Neural Comput. AppL,2007,16: 101-108.
  • 5Rahrooh A, Shepard S. Identification of nonlinear systemsusing NARMAX model [ J ]. Nonlinear Analysis :Theory Method Applications, 2009,71 ( 12 ):1198-1202.
  • 6Zhang Y, Liang X X, Yang P,Chen Z Q, Yuan ZZ. Modeling and control of nonlinear discrete-time systemsbased on compound neural networks [JJ. Chinese Journalof Chemical Engineering . 2009 , 17 : 454-459.
  • 7hawrynczuk M. Modelling and nonlinear predictive control ofa yeast fermentation biochemical reactor using neuralnetworks [J]. Chem. Eng. J. , 2008,145 : 290-307.
  • 8Mahmoodi S,Poshtan J, Jahed-Motlagh M R, MontazeriA. Nonlinear model predictive control of a pH neutralizationprocess based on Wiener-Laguerre model [J]. Chem. Eng.J.,2009, 146: 328-337.
  • 9Deshpande S, Patwardhan S C,Methekar R, RengaswamyR. Development of a closed form nonlinear predictive controllaw based on a class of Wiener models [J]. Ind. Eng.Chem. Res.,2010, 49: 148-165.
  • 10Kishor N. Nonlinear predictive control to track deviatedpower of an identified NNARX model of a hydro plant [J].Expert Syst. Appl.,2008, 35: 1741-1751.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部