期刊文献+

黑曲霉负载银纳米颗粒的制备及其抗菌性能 被引量:2

In-situ synthesis and antibacterial performance of silver nanoparticle immobilized on Aspergillus niger
下载PDF
导出
摘要 采用非酶还原法,以黑曲霉菌原位还原银氨离子制备一种新型银纳米颗粒(AgNPs)/菌体复合抗菌材料,着重考察了反应温度与pH值对还原过程和所得复合材料的抗菌性能及稳定性的影响。结果表明,在温度为30℃、60℃和pH 9.5、11.5条件下,能够合成出粒径为6.9~8.2nm的近球形AgNPs。该AgNPs均匀地分布在菌体表面上,对E.coli显示出高的抗菌性能:最小抑菌浓度(MIC)为217~434mg·L-1(以菌粉总质量表示)或8~20mg Ag·L-1(以银含量表示)。提高反应温度有利于提高菌体银负载量,但AgNPs粒径增大,抗菌性能有所下降;提高反应pH值有利于提高还原速率,而对抗菌性能影响不显著。复合材料中AgNPs与菌体结合牢固,单位质量复合材料释出的Ag+含量为1.7~6.8mg.g-1,提高反应温度和pH值后Ag+的释出均减少。 A facile and eco-friendly route was presented to in-situ synthesize and immobilize silver nanoparticles(AgNPs,6.9—8.2 nm)using Aspergillus niger as both reducing agent and support through the non-enzymatic reduction mechanism.The well-dispersed AgNPs/mycelium composite exhibited excellent antimicrobial activity against E.coli,and the minimal inhibitory concentration(MIC)was 217—434 mg·L-1(based on the mass of AgNPs/mycelium)or 8—20 mg·L-1(based on the mass of AgNPs).Although increasing reaction temperature from 30℃ to 60℃ resulted in increase of silver loading,the mean size of the AgNPs became larger at the same time,leading to the decrease of antimicrobial activity.The change of pH value from 9.5 to 11.5 promoted the reaction rate and shortened the reaction time(from 144 h to 24 h),whereas no significant effect was observed on the antimicrobial activity.Finally,the release of AgNPs and Ag+ from the AgNPs/mycelium composite was investigated.The results suggested that the prepared AgNPs were supported firmly on Aspergillus niger and the release of Ag+ was 1.7—6.8 mg per gram of AgNPs/mycelium.Furthermore,increasing reaction temperature or pH value led to the decrease of Ag+ release.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第7期2271-2278,共8页 CIESC Journal
基金 国家自然科学基金重点项目(21036004)和面上项目(20976146)~~
关键词 银纳米颗粒 生物还原 非酶催化 黑曲霉菌 抗菌性能 silver nanoparticles bioreduction non-enzymatic Aspergillus niger antibacterial performance
  • 相关文献

参考文献2

二级参考文献42

  • 1陈祖耀,朱英杰,陈敏,钱逸泰,张曼维.γ-射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996(1):44-45. 被引量:19
  • 2赵斌,马海燕,张宗涛,胡黎明.银超细粉末的制备[J].华东理工大学学报(自然科学版),1996,22(2):221-226. 被引量:11
  • 3Arai N, Tsuji H, Motono M, et al. Formation of silver nanoparticles in thin oxide layer on Si by negative-ion implantation[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206: 629-633.
  • 4Chen W, Zhang J. Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method[J].Scripta Materialia, 2003, 49: 321-325.
  • 5Tan Y, Li Y, Zhu D. Preparation of silver nanocrystals in the presence of aniline[J]. Journal of Colloid and Interface Science, 2003, 258: 244-251.
  • 6Sondi I, Goia Dan V, Matijevic E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. Journal of Colloid and Interface Science, 2003, 260:75-81.
  • 7Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles[J]. Materials Letters, 2003, 57:3874-3879.
  • 8Qi L, Gao Y, Ma J. Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157: 285-294.
  • 9Esumi K, Hosoya T, Suzuki A. Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers[J]. Journal of Colloid and Interface Science, 2000, 226: 346-352.
  • 10Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment[J]. Materials Letters, 1993, 17:314-318.

共引文献41

同被引文献62

  • 1鞠剑峰,李澄俊,徐铭.纳米Ag/TiO_2复合材料的抗菌性能[J].精细化工,2005,22(1):59-61. 被引量:35
  • 2Sathishkumar M, Mahadevan A, Vijayaraghavan K, Pavagadhi S, Balasubramanian R. Green recovery of gold through biosorption, biocrystallization, and pyro- crystallization [J]. Industrial & Engineering Chemistry Research, 2010, 49 (16): 7129-7135.
  • 3Ishikawa S, Suyama K, Arihara K, Itoh M. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane [J]. Bioresource Technology, 2002, 81 (3): 201-206.
  • 4Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K. Adsorption of gold( III ), platinum ( IV ) and palladium ( II ) onto glyeine modified crosslinked chitosan resin [J]. Bioresource Technology, 2008, 99 (9) : 3801-3809.
  • 5Syed S. Recovery of gold from secondary sourees a review [J]. Hydrometallurgy, 2012, 115-116:30-51.
  • 6Mack C, Wilhelmi B, Duncan J R, Burgess J E. Biosorption of precious metals [J].Biotechnology Advances, 2007, 25 (3): 264-271.
  • 7Das N. Recovery of precious metals through biosorption -- a review [J]. Hydrometallurgy, 2010, 103 (1/2/3/4): 180-189.
  • 8Pethkar A V, Paknikar K M. Recovery of gold from solutions using Cladosporium cladosporioides hiomass beads [J]. Journal of Biotechnology, 1998, 63 (2): 121-136.
  • 9Kapoor A, Viraraghavan T. Fungal biosorption an alternative treatment option for heavy metal bearing wastewaters: a review [J].Bioresource Technology, 1995, 53 (3): 195-206.
  • 10Das S K, Mukherjee M, Guha A K. Interaction of chromium with resistant strain Aspergillus versicolor: investigation with atomic force microscopy and other physical studies [J]. Langmuir, 2008, 24 (16) : 8643-8650.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部