期刊文献+

Logistic模型阈值控制悖论及复杂性分析 被引量:4

PARADOX AND COMPLEXITY ANALYSIS FOR LOGISTIC MODEL UNDER LIMITER CONTROL
原文传递
导出
摘要 研究了Logistic模型稳态均值在阈值控制下产生反直觉变化现象与复杂响应的机理.结果表明,阈值控制能引起映射区间改变和映射分布变化,二者之间的竞争导致了受控Logistic模型稳态均值的反直觉变化现象与复杂响应.在阈值下限接近0或阈值上限接近1时,映射分布变化是影响稳态均值复杂响应的主导因素.阈值下限大于其临界值或阈值上限小于其临界值时,稳态均值变化主要由映射区间改变决定,此时,受控Logistic模型稳态均值会出现反直觉变化现象.理论分析结果通过数值仿真得到进一步证实. In this paper, the mechanism of the counterintuitive phenomena and complex response of Logistic model's steady mean under limiter control is studied. The results show that limiter control can induce the mapping interval's change and the mapping distribution's variation. The competition between the two gives rise to the counterintuitive phenomena and complex response of the controlled Logistic model's steady mean. When the lower limiter is close to 0 or the upper limiter is close to 1, the variation of mapping distribution is the principle factor for influence on the complex response of steady mean. When the lower limiter is greater than its critical value or the upper limiter is less than its critical value, the variation of the steady mean is dominated by the change of mapping interval, and the counterintuitive phenomena of the steady mean in the controlled Logistic model will arise. Finally, some numerical simulations are provided to verify the theoretical results.
作者 李战国 徐伟
出处 《系统科学与数学》 CSCD 北大核心 2012年第4期506-512,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10872165 10932009 11172233)资助课题
关键词 阈值控制 LOGISTIC模型 反直觉现象 复杂响应 Limiter control, logistic model, counterintuitive phenomenon, complex response.
  • 相关文献

参考文献13

  • 1刘式达;梁福明;刘式适;辛国君.自然科学中的混沌和分形[M]北京:北京大学出版社,2003.
  • 2卢亚丽,唐仁春,薛惠锋.动态产量博弈模型的阈值控制[J].系统工程,2008,26(3):59-64. 被引量:1
  • 3Stoop R,Wagner C. Scaling properties of simple limiter control[J].Physical Review Letters,2003,(15):154101-154104.
  • 4郝柏林.从抛物线谈起:混沌动力学引论[M]上海:上海科技教育出版社,1993.
  • 5胡岗;萧井华;郑志刚.混沌控制[M]上海:上海科技教育出版社,2000.
  • 6Pethel S D,Corron N J,Underwood Q R,Myneni K. Information flow in chaos synchronization:Fundamental tradeoffs in precision,delay,and anticipation[J].Physical Review Letters,2003,(25):254101-254104.
  • 7Zhou C T,Yu M Y. Comparison between constant feedback and limiter controllers[J].Physical Review E,2005,(01):016204-016215.
  • 8May R M. Simple mathematical models with very complicated dynamics[J].Nature,1976,(5560):459-467.
  • 9Brownlee R A,Gorban A N,Levesley J. Nonequilibrium entropy limiters in lattice Boltzmann methods[J].Journal of Physics A,2008.385-406.
  • 10Corron N J,Pethel S D,Hopper B A. Controlling chaos with simple limiters[J].Physical Review Letters,2000,(17):3835-3838.

二级参考文献16

  • 1杜建国,盛昭瀚,姚洪兴.一类混沌经济模型的阈值控制法研究[J].系统工程理论与实践,2004,24(10):27-32. 被引量:8
  • 2姚洪兴,徐峰.双寡头有限理性广告竞争博弈模型的复杂性分析[J].系统工程理论与实践,2005,25(12):32-37. 被引量:47
  • 3May R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976,261(5560) :459-467.
  • 4Hilker F M. Paradox of simple limiter control[J]. Physical Review E, 2006,73 : 052901.
  • 5Chen L,Chen G R. Controlling chaos in an economic model[J]. Physica A, 2007,374 (1): 349- 358.
  • 6Ahmed E,Hegazi A S. On dynamical multi-team and signaling games[J]. Applied Mathematics and Computation, 2006,172 (1) : 524- 530.
  • 7Yao H X, Xu F. Complex dynamics analysis for a duopoly advertising model with nonlinear cost [J]. Applied Mathematics and Computation, 2006,180 (1) : 134- 145.
  • 8Zhang J X,et al. Analysis of nonlinear duopoly game with heterogeneous players[J]. Economic Modelling, 2007,24(1) :138- 148.
  • 9Elettreby M F, Hassan S Z. Dynamical multi-team Cournot game[J]. Chaos,Solitons & Fractals, 2006, 27(3) :666-672.
  • 10Agiza H N, Elsadany A A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players [J]. Applied Mathematics and Computation,2004, 149(3): 843-860.

共引文献6

同被引文献43

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部