期刊文献+

基于抽象消减和流量估计的并行网络模拟拓扑划分算法 被引量:1

Topology Partition Algorithm Based on Abstract Subtraction and Traffic Estimation for Parallel Network Simulation
下载PDF
导出
摘要 大规模并行网络模拟已成为目前研究Internet的主要方法,针对传统网络拓扑划分方法划分不均衡的问题,提出基于抽象消减和流量估计的并行网络模拟拓扑划分算法.采用抽象消减技术,将拓扑中度为1的节点递归抽象到其相连路由器上;采用流量估计技术,首先对拓扑中所有节点和链路利用估计算法进行权值初始化,然后将节点间流量转换为节点间权值,并将相应节点和链路的权值进行叠加.同时为避免权值差距过大,对权值进行规范化处理.实验结果表明,该划分算法相对于传统划分算法,节点压缩率在93.7%以上,缩减子域数约56.9%,减少远程链路数约22.9%,减少模拟时间约12.63%,提高了模拟的规模和效率. Parallel simulation for large scale network has become the main method of Internet research. Aiming at the imbalance of traditional network topology partition method, a topology partition algorithm for parallel network simulation based on abstract subtraction and traffic estimation is put forward. The node with one degree is reeursively abstracted to conjoint router by abstract subtraction technology. The weights of node and link in the topology are initialized by estimating algorithm, and the traffic between nodes is changed to weight, which will he accumulated to the corresponding node and link. At the same time, the weight should be normalized to avoid weights gap. Experimental results prove that this partition algorithm can abstract node by 93.7 percent and reduce by subdomain by about 56.9 percent, r-link by about 22. 9 percent, and simulation time by about 12.63 percent. Compared with the traditional partition algorithm, the algorithm improves the scale and efficiency of simulation.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第7期1560-1567,共8页 Journal of Computer Research and Development
基金 国家“八六三”高技术研究发展计划重点项目(2007AA010503) 国家自然科学基金项目(61100189,61003261) 山东省中青年科学家奖励基金项目(BS2011DX001) 威海市科技攻关基金项目(2010-3-96) 哈尔滨工业大学科研创新基金项目(HIT.NSRIF.2011119)
关键词 并行网络模拟 拓扑划分 负载均衡 节点抽象 流量估计 parallel network simulation topology partition load balance node abstract traffic estimation
  • 相关文献

参考文献17

  • 1尤洪涛,姜小成,陈左宁.基于动态任务划分的降级机制[J].微计算机信息,2006,22(10X):72-75. 被引量:9
  • 2王浩,姚长利,严红平,郭琳.平面区域几何划分的拓扑算法研究[J].计算机应用与软件,2008,25(12):12-14. 被引量:4
  • 3Chen J, Taylor V E. Mesh partitioning for efficient use of distributed systems [J] Parallel and Distributed Systems, 2002, 13(1).. 67-79.
  • 4Torkar R, Mankefors-Christiernin S. Combining partition and random testing[C] //Proe of the 24th IASTED Int Conf on Software Engineering. Alberta: Int Association of Science and Technology for Development, 2006:367-372.
  • 5Kernighan B, Lin S. An efficient heuristic procedure for partitioning graphs [J]. The Bell System Technical Journal, 1970, 49(1): 291-307.
  • 6Fiduccia C, Mattheyses R. A linear time heuristic for improving network partitions [C] //Proc of the 19th Conf on in Design Automation. Piscataway, NJ: IEEE, 1982: 175- 181.
  • 7Hendrickson B, Leland R. An improved spectral graph partitioning algorithm for mapping parallel computations [J] SIAM Journal on Scientific Computing, 1995, 16 (2) : 452- 469.
  • 8Pothen A, Simon H, Wang L, et al. Towards a fast implementation of spectral nested dissection[C] //Proc of the 1992 ACM/IEEE Conf on Supereomputing. Los Alamitos: IEEE Computer Society, 1992:42-51.
  • 9Benlic U, Hao J. K. An effective multilevel tabu search approach for balanced graph partitioning [J] Computers and Operations Researeh, 2011, 38(7): 1066-1075.
  • 10Trifunovic A, Knottenbelt W J. Towards a parallel disk- based algorithm for multilevel k-way hypergraph partitioning [C] //Proc of the 18th Int Parallel and Distributed Processing Symp. Los Alarnitos: IEEE Computer Society, 2004: 3261- 3268.

二级参考文献36

共引文献25

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部