摘要
我们基于拟牛顿法的割线条件提出两种LS型共轭梯度法.有趣的是,我们提出的方法中对于βk的计算公式与戴和廖[3]提出的有相似的结构.但是,新方法能够在合理的假设下保证充分下降性,这一点是戴-廖方法所不具备的.在强Wolfe线搜索下,给出了新方法的全局收敛结果.数值结果论证了该方法的有效性.
In this paper, two new LS methods are proposed based on the secant condition of quasi- Newton methods. Interestingly,the formulas for flk in our methods have similar forms as those pro- posed by DAI and LIAO But superior to the DAI-LIAO method, the sufficient descent property of the proposed methods can be guaranteed under reasonable assumptions. Global convergence re- suits for the proposed methods with the strong Wolfe line search are established. Numerical results show that the new method is very efficient.
出处
《应用数学》
CSCD
北大核心
2012年第3期515-526,共12页
Mathematica Applicata
基金
Supported by the Key Project of 2010 Chongqing Higher Education Teaching Reform of China
关键词
LS方法
割线条件
充分下降条件
线搜索
全局收敛
LS method
Secant condition
Sufficient descent condition
Line search
Global convergence