期刊文献+

建立在割线条件上的新Liu-Storey型共轭梯度法的全局收敛性(英文)

Global Convergence of New Liu-Storey Conjugate Gradient Methods Based on the Secant Condition
下载PDF
导出
摘要 我们基于拟牛顿法的割线条件提出两种LS型共轭梯度法.有趣的是,我们提出的方法中对于βk的计算公式与戴和廖[3]提出的有相似的结构.但是,新方法能够在合理的假设下保证充分下降性,这一点是戴-廖方法所不具备的.在强Wolfe线搜索下,给出了新方法的全局收敛结果.数值结果论证了该方法的有效性. In this paper, two new LS methods are proposed based on the secant condition of quasi- Newton methods. Interestingly,the formulas for flk in our methods have similar forms as those pro- posed by DAI and LIAO But superior to the DAI-LIAO method, the sufficient descent property of the proposed methods can be guaranteed under reasonable assumptions. Global convergence re- suits for the proposed methods with the strong Wolfe line search are established. Numerical results show that the new method is very efficient.
作者 王开荣 张杨
出处 《应用数学》 CSCD 北大核心 2012年第3期515-526,共12页 Mathematica Applicata
基金 Supported by the Key Project of 2010 Chongqing Higher Education Teaching Reform of China
关键词 LS方法 割线条件 充分下降条件 线搜索 全局收敛 LS method Secant condition Sufficient descent condition Line search Global convergence
  • 相关文献

参考文献13

  • 1Bongartz I,Conn A R,Gould N I M,Toint P L. CUTE:constrained and unconstrained testing environments[J].ACM Transactions on Mathematical Software,1995.123-160.
  • 2DAI Yuhong,HAN Jiye,LIU Guanghui,SUN Defeng YIN Hongxia YUAN Yaxiang. Convergence properties of nonlinear conjugate gradient methods[J].SIAM Journal on Optimization,1998.348-358.
  • 3DAI Yuhong,LIAO Lizhi. New conjugacy conditions and related nonlinear conjugate gradient methods[J].Applied Mathematics and Optimization,2001.87-101.
  • 4Gilbert J C,Nocedal J. Global convergence properties of conjugate gradient methods for optimization[J].SIAM Journal on Optimization,1992.21-42.
  • 5Hager W W,ZHANG Hongchao. A new conjugate gradient method with guaranteed descent and an efficient line search[J].SIAM Journal on Optimization,2005.170-192.
  • 6Hestenes M R,Stiefel E. Methods of conjugate gradients for solving linear systems[J].Journal of Research of the National Bureau of Standards,1952.409-436.
  • 7Liu Y L,Storey C S. Efficient generalized conjugate gradient algorithms,part 1:theory[J].Journal of Optimization Theory and Applications,1991.129-137.
  • 8Perry A. A modified conjugate gradient algorithm[J].Operations Research,1978.1073-1078.
  • 9Polak B,Ribière G. Note sur 1a convergence des méthodes de directions conjuguéees[J].Rev Francaise Informat Recherche Operationelle,1969.35-43.
  • 10Powell M J D. Restart procedures of the conjugate gradient method[J].Mathematical Programming Journal,1997.241-254.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部