期刊文献+

Marchuk模型周期解和概周期解的存在性与稳定性(英文)

Existence and Stability of Periodic and Almost Periodic Solutions of Marchuk's Model with Diffusion
下载PDF
导出
摘要 本文讨论具有时滞和扩散的Marchuk模型.根据模型参数求出了模型方程的上、下解,利用单调方法和Liapunov函数分别证明了周期解和概周期解的存在性及其稳定性. Marchuk's model with time delays and diffusion is discussed in this paper. Since the pa- rameters of the model which satisfy some conditions, the upper-lower solutions of this model equa- tions are obtained. The existence and stability of periodic solution and almost periodic solutions are investigated by using monotone iterative method and Liapunov's function, respectively.
出处 《应用数学》 CSCD 北大核心 2012年第3期553-559,共7页 Mathematica Applicata
基金 Supported by the Fundamental Research Funds for the Central Universities (CUG090112) the National Basic Research Program of China(2011CB710602,2011CB710604)
关键词 Marchuk模型 上、下解 周期解 概周期解 稳定性 Marchuk model Upper-lower solution Periodic solution Almost periodic solution Stability
  • 相关文献

参考文献12

  • 1Bange D I. Periodic solutions of quasilinear parabolic differential equations[J].Journal of Differential Equations,1995.61-71.
  • 2Byrne H M. The effect of time delays on the dynamics of avascular tumour growth[J].Mathematical Biosciences,1997.83-117.
  • 3Beyrne H M,Chaplain A J. Growth of necrotic tumour in the presence and absence of inhibitors[J].Math Boisci,1996.187-216.
  • 4Beyrne H M,Chaplain A J. Growth of non-necrotic tumour in the presence and absence of inhibitors[J].Mathematical Biosciences,1995.151-181.
  • 5Forys U. Global analysis of Marchuk's model in a case of weak immune system[J].Math Camp Model,1997.97-106.
  • 6Forys U. Global analysis of the initial value problem for a system of ODE modeling the immune system after vaccinations[J].Math Camp Model,1999.79-85.
  • 7Forys U. Global analysis of Marchuk's model in case of strong immune system[J].J Biol Sys,2000.331-346.
  • 8HE Mengxing. Periodic and almost periodic solutions of reaction diffusion equation[J].Acta Mathematica Sinica,1989,(01):91-97.
  • 9Inoue A,Miyakawa T,Yoshida K. Some properties of solutions for semilimear heat equations with time lag[J].Journal of Differential Equations,1977.383-396.
  • 10LIU Baoping,Pao C V. Periodic solutions of coupled semilinear parabolic boundary value problems[J].Nonlinear Analysis-Theory Methods and Applications,1982,(03):237-252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部