期刊文献+

一类奇异临界双调和椭圆方程的群不变解

On Group-invariant Solutions of a Class of Singular Critical Biharmonic Elliptic Equations
下载PDF
导出
摘要 讨论一类含有Hardy-Sobolev临界指数项的奇异双调和椭圆方程,应用Lions集中紧性原理、Palais对称临界原理、Hardy-Rellich型不等式和变分方法,证明了方程在适当条件下群不变解的存在性和多重性. In this paper, we discuss a class of singular biharmonic elliptic equations with critical Hardy-Sobolev exponent terms. By using the concentration-compactness principle of Lions together with the symmetric criticality principle of Palais,the Hardy-Rellich inequality and variational methods,we prove several existence and multiplicity results of grolap-invari- ant solutions under certain appropriate conditions.
出处 《应用数学》 CSCD 北大核心 2012年第3期608-615,共8页 Mathematica Applicata
基金 国家自然科学基金(11071180) 重庆邮电大学博士启动基金(A2011-46)
关键词 群不变解 HARDY-SOBOLEV临界指数 Hardy-Rellich型不等式 双调和椭圆方程 Group-invariant solution Critical Hardy-Sobolev exponent Hardy-Rellich inequality Biharmonic elliptic equation
  • 相关文献

参考文献10

  • 1Tertikas A,Zographopoulos B. Best constants in the Hardy-Rellich inequalities and related improvements[J].Advances in Mathematics,2007,(2):407-459.doi:10.1016/j.aim.2006.05.011.
  • 2Waliullah S. Minimizers and symmetric minimizers for problems with critical Sobolev exponent[J].Topological Methods in Nonlinear Analysis,2009.291-326.
  • 3DENG Yinbin,JIN Lingyu. On symmetric solutions of a singular elliptic equation with critical SobolevHardy exponent[J].Journal of Mathematical Analysis and Applications,2007.603-616.
  • 4DENG Zhiying,HUANG Yisheng. On G-symmetric solutions of a quasilinear elliptic equation involving critical Hardy-Sobolev exponent[J].Journal of Mathematical Analysis and Applications,2011.578-590.
  • 5Palais R. The principle of symmetric criticality[J].Communications in Mathematical Physics,1979.19-39.
  • 6Brezis H,Nirenberg L. Postive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J].Communications on Pure and Applied Mathematics,1983.437-477.
  • 7Gazzola F,Grunau H C,Squassina M. Existence and nonexistence results for critical growth biharmonic elliptic equations[J].Calculus of Variations,2003.117-143.
  • 8Adimurthi,Grossi M,Santra S. Optimal Hardy-Rellich inequalities,maximum principle and related eigenvalue problem[J].Journal of Functional Analysis,2006.36-83.
  • 9WANG Youjun,SHEN Yaotian. Multiple and sign-changing solutions for a class of semilinear biharmonic equation[J].J Diff Equats,2009.3109-3125.
  • 10Rabinowitz H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].Providence:Amer.Math.Soc,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部