摘要
通过对由经典加罚算法得到的两个解进行线性组合,研究Stokes方程低阶非协调混合元的改进加罚算法.该方法利用较大的罚参数能得到同使用较小参数的经典加罚方法一样的收敛阶.此外,基于单元的特性和插值后处理技巧,得到一些超收敛结果,从而改进以往的文献结果.
By a linear combination of two solutions gained by classical penalty finite element method for Stokes equations, a modified penalty scheme of low order nonconforming mixed finite elements is studied. It is shown that this method with a larger penalty parameter can achieve the same accuracy as the classical method with a smaller one. Furthermore,based on some special properties of the low order elements and the postprocessing technique,some superconvergence results are derived,which improve the results of previous literature.
出处
《应用数学》
CSCD
北大核心
2012年第3期678-684,共7页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(10971203,11101384)
Specialized Research Fund for the Doctoral Program of Higher Education(20094101110006)
关键词
STOKES方程
非协调混合元
改进加罚算法
超收敛
Stokes equation
Nonconforming mixed finite element
Modified penaltymethod
Superconvergence