期刊文献+

具有时滞和积分边界条件的三阶奇异边值问题的正解(英文) 被引量:1

Positive Solutions for Singular Third-order BVPwith Integral Boundary Condition and Delay
下载PDF
导出
摘要 本文基于锥拉伸和锥压缩不动点定理,得到一类三阶时滞奇异边值问题至少具有两个正解的充分条件,并给出例子说明定理的应用. Based on the fixed-point theorem of cone expansion and compression, some sufficient conditions for the existence of at least two positive solutions for a singular third-order boundary val- ue problem(BVP) with delay are derived. An example is given to illustrate our results.
出处 《应用数学》 CSCD 北大核心 2012年第3期697-706,共10页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China(11071001) the Program of Natural Science Research in Anhui Colleges and Universities(KJ2010ZD02,KJ2011A020) the Scientific Research Starting Fund for Dr of Anhui University the Research Fund for Doctoral Program of Higher Education of China(20093401110001) the 211 Project of Anhui University(KJT-D002B, KJQN1001)
关键词 边值问题 正解 时滞 Boundary value problem Positive solution sDelay
  • 相关文献

参考文献5

  • 1SHU Xiaobao,XU Yuantong. Triple positive solutions for a class of boundary value problem of secondorder functional differential equations[J].Nonlinear Analysis,2005.1401-1411.
  • 2LIU Zeqing,Ume J S,Anderson D R,Kang S M. Twin monotone positive solutions to a singuar nonlinear third-order differential equation[J].Journal of Mathematical Analysis and Applications,2007.299-313.
  • 3SUN Hongrui,WEN Weikang. On the number of positive solutions for a nonlinear third order boundary value problem[J].Int J Differ Equ,2006.165-176.
  • 4BAI Zhanbing,FEI Xiangli. Existence of triple positive solutions for a third order generalized right focal problem[J].Mathematical Inequalities and Applications,2006,(03):437-444.
  • 5GUO Dajun,Lakshikantham V. Nonlinear Problems in Abstract Cones[M].New York:Academic Press,Inc,1988.

同被引文献22

  • 1陈顺清.一类三阶三点非线性边值问题的正解[J].四川师范大学学报(自然科学版),2004,27(4):360-363. 被引量:5
  • 2冯育强,刘三阳.一类非线性三阶边值问题的可解性[J].工程数学学报,2007,24(3):543-546. 被引量:10
  • 3Anderson D, Davis J M. Multiple solutions and eigenvalues for third -order fight focal boundary value problem[J]. J Math Anal Appl,2002,267( 1 ) :135 - 157.
  • 4Bai Z B, Fei X L. Existence of triple positive solutions for a third order generalized right focal problem[J]. Math Inequal Appl, 2006,9 ( 3 ) :437 - 444.
  • 5Feng Y Q, Liu S Y. Solv'ability of a third -order two -point boundary value problem[ J]. Appl Math l-ett ,2005,18(9) :I034 -1040.
  • 6Guo L J, Sun J P, Zhao Y H. Existence of positive solutions for nonlinear third - order three - point boundary value problems [J]. Nonlinear Anal, 2008,68 ( 10 ) : 3 l 51 - 3158.
  • 7Sun Y P. Positive solutions for third -order three -point nonhomogeneous boundary value problems[J]. Appl Math Lett,2009, 22(1) :45 -51.
  • 8Boucherif A, A1 - Malki N. Nonlinear three - point third order boundary value problems [ J ]. Appl Math Comput,2007,190 (2) 1168 - 1177.
  • 9Hopkins B, Kosmatov N. Third - order boundary value problems with sign - changing solutions [ J]. Nonlinear Anal,2007 67(1 ) :126 - 137.
  • 10E1 - Shahed M. Positive solutions for nonlinear singular third order boundary value problem [ J ]. Commun Nonlinear Sci Num Sim- ulation, 2009,14 ( 2 ) : 424 - 429.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部