期刊文献+

基于视觉的无人机自主着陆地标识别方法 被引量:4

Landmark recognition for UAV autonomous landing based on vision
下载PDF
导出
摘要 在无人机自主着陆过程中,传统地标识别方法的相似阈值确定需大量实验估计。为解决此问题,采用一种基于仿射不变矩和支持向量机的识别方法,首先设计了六圆组合的图标作为无人机自主着陆地标;由于无人机会拍摄到发生扭曲的地标图像,因此提取地标的仿射不变矩作为输入特征;最后将其输入支持向量机分类模型,完成地标的识别。与传统的几何不变矩和BP神经网络相比较,该方法提高了地标的识别精度并降低了识别测试时间,因此对地标识别具有一定的实用性。 In the traditional method of recognizing the landmark during the process of UAV autonomous landing,conformed the threshold through lots of experiments.In order to solve this problem,this paper studied a kind of method based on affine invariant moments and SVM classifier.First of all,it designed a new landmark combined with 6 circles.Second,considering the fact that the UAV in flight could take distorted landmark images,it extracted the affine invariant moments as features.Finally,it put affine invariant moments into SVM classifier to complete landmark recognition.It compared the proposed method with Hu invariant moment and BP neural network.The experimental results show that combination of affine invariant moment and SVM classifier improve the accuracy and decrease test time of UAV landing landmark classification.Therefore,the classification method based on affine invariant moments and SVM classifier has a certain degree of practicality in the landmark recognition.
出处 《计算机应用研究》 CSCD 北大核心 2012年第7期2780-2783,共4页 Application Research of Computers
基金 江苏省普通高校研究生科研创新计划资助项目(CXLX11_0183)
关键词 无人机自主着陆 地标设计 地标识别 仿射不变矩 支持向量机 UAV autonomous landing landmark design landmark recognition affine invariant moments SVM
  • 相关文献

参考文献20

  • 1YANG Hui,CHENG Xui-ping,XU Shan-jia. An unmanned air vehicle (UAV) GPS location and navigation system[A].1998.472-475.
  • 2Al-JARRAH M A,ADJIANSYAH S,MARJI Z K. Autonomous aerial vehicles,guidance,control and signal processing platform[A].2011.1-17.
  • 3MERZ T,DURANTI S,CONTE G. Autonomous landing of an unmanned helicopter based on vision and inertial sensing[A].2004.343-352.
  • 4邱力为,宋子善,沈为群.用于无人直升机着舰控制的计算机视觉技术研究[J].航空学报,2003,24(4):351-354. 被引量:28
  • 5CHIH-JEN W,WEN-HSIANG T. An omni-vision based localization method for automatic helicopter landing assistance on standard helipads[A].2010.327-332.
  • 6SHARP C S,SHAKERNIA O,SASTRY S S. A vision system for landing an unmanned serial vehicle[A].2001.1720-1727.
  • 7ZENG Fu-cen,SHI Hai-qing,WANG Hong. The object recognition and adaptive threshold selection in the vision system for landing an unmanned aerial vehicle[A].2009.117-122.
  • 8SHI Hai-qing,WANG Hong. A vision system for landing an unmanned helicopter in a complex environment[A].2009.
  • 9刁灿,王英勋,王金提,苗淼.无人机自动着陆中的机器视觉辅助技术[J].航空学报,2008,29(B05):79-84. 被引量:18
  • 10刁灿,王英勋,王金提,苗淼.辅助自动着陆技术[J].系统仿真学报,2008,20(S1):495-498. 被引量:5

二级参考文献42

  • 1徐贵力,程月华,沈春林.基于激光扫描和计算机视觉的无人机全天候自主着陆导引技术[J].航空学报,2004,25(5):499-503. 被引量:12
  • 2张广军,周富强.基于双圆特征的无人机着陆位置姿态视觉测量方法[J].航空学报,2005,26(3):344-348. 被引量:41
  • 3连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报,2007,28(6):1029-1034. 被引量:20
  • 4贾云得.机器视觉[M].北京:科学出版社,1999.252-271.
  • 5ALLIPI C, CATELANI M, FORT A, et al. SBT soft fault diagnosis in analog electronic circuits: a sensitivity-based approach by randomized algorithms [J].IEEE Transactions on Instrumentation and Measurement, 2002, 51(5):1116-1125.
  • 6SALAT R, OSOWSKI S. Analog filter diagnosis using support vector machine[C]. ECCTD'03, Krakow, 2003: 421-424.
  • 7SIWEK K, OSOWSKI S, MARKIEWICZ T. Support vector machine for fault diagnosis in electrical circuits[C] NORSIG'06, 2006: 342-345.
  • 8WANG A N, LIU J F, LI H,et al. A novel algorithm for fault diagnosis of analog circuit with tolerances using improved binary-tree svc based on somnn clustering[C]. ICNC'07, 2007, 1:491-496.
  • 9HSU C W, LIN C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions On Neural Networks, 2002, 13(2): 415-425.
  • 10ALIPPI C, CATELANI M, selection of test frequencies FORT A, et al. Automated for fault diagnosis in analog electronic Circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1033-1043.

共引文献99

同被引文献33

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部