摘要
在多服务台离散时间排队的基础上,研究了服务台同步工作休假模型。利用矩阵几何解的方法,详细给出了过程满足正常返性的条件和率阵存在性的证明,从而得到稳态分布和平均队长的表达式。设置好参数,利用MATLAB编程,得到了数值例子,进一步证实了系统理论分析的正确性,并得到了平均队长与几个重要参数之间的关系图像。
Based on the discrete-time queue with multiple-sever, the model with servers synchronously working vacauons is studied. The positive recurrent condition which process fulfills and the proof of existence of the rate matrix are given in detail using matrix geometric solution, thus the expression of the stationary distribution and the average length are obtained. After the parameters are set, numerical examples are obtained using MATLAB to programming and that confirms the correctness of the theory analysis of the system further. The images of relations between the average length and several important parameters are provided.
出处
《燕山大学学报》
CAS
2012年第3期259-264,共6页
Journal of Yanshan University
基金
河北省高等学校科学技术研究指导项目(Z2010182)
关键词
排队论
多服务台
同步工作休假
矩阵几何解
平均队长
queuing theory
multiple-server
synchronously working vacations
matrix geometric solution
average length