期刊文献+

基于留一准则的多尺度径向基函数网络

Multi-scale RBF Network Based on Leave One Out Criterion
下载PDF
导出
摘要 针对传统径向基函数(RBF)网络难以确定迭代停止条件的缺点,提出采用最小化留一误差来训练多尺度RBF网络的算法。分别使用全局k均值聚类算法和经验选择方法,构造RBF节点的中心和尺度参数备选项集合,利用正交前向选择方法逐步最小化留一误差,从而确定网络的每一项中心和尺度参数。实验结果显示,该算法能够自动终止新网络节点选择,不需要额外的迭代终止条件,与传统的RBF网络相比,能够产生稀疏性更高且泛化能力更好的径向基网络。 In order to circumvent the difficulty of pre-assigning a threshold to terminate the iterations in training traditional Radial Basis Function(RBF) network,a novel RBF network training algorithm is proposed.A global k-means clustering algorithm and empirical method are utilized to construct the candidate sets for centre and scales of regressors.At each regressor stage,the parameters of each term are selected by minimizing Leave One Out(LOO) criterion using orthogonal forward selection.Simulation results show that the new algorithm can be terminated fully automatically.Compared with the other RBF networks,this scheme is capable of producing sparser RBF network with much better generality.
出处 《计算机工程》 CAS CSCD 2012年第12期172-175,共4页 Computer Engineering
基金 国家自然科学基金资助项目(11026145 61071188 61102103) 中央高校基本科研业务费专项基金资助项目(CUG090112 CUG110407 CCNU10A01013) 湖北省自然科学基金资助项目(2010CDB04205 2009CDB077) 河北省教育厅自然科学青年基金资助项目(2010258)
关键词 径向基函数网络 多尺度 留一准则 正交前向选择 全局k均值聚类 Radial Basis Function(RBF) network multi-scale Leave One Out(LOO) criterion orthogonal forward selection global k-means clustering
  • 相关文献

参考文献12

  • 1Karayiannis N B.Reformulated Radial Basis Neural NetworksTrained by Gradient Descent[J].IEEE Trans.on Neural Networks,1999,10(3):657-671.
  • 2Lazaro M,Santamaria I,Pataleon C.A New EM-based TrainingAlgorithm for RBF Networks[J].Neural Networks,2003,16(1):69-77.
  • 3Gonzalez J,Rojas I,Ortega J,et al.Multi-objective EvolutionaryOptimization of the Size,Shape and Position Parameters of RadialBasis Function Networks for Function Approximation[J].IEEETrans.on Neural Networks,2003,14(6):1478-1495.
  • 4Chen Sheng,Xia Hong,Harris C J,et al.Construction of TunableRadial Basis Function Networks Using Orthogonal ForwardSelection[J].IEEE Trans.on Systems,Man and Cybernetics,2009,39(2):457-466.
  • 5Chen Sheng,Cowan C F N,Grant P M.Orthogonal Least SquaresLearning Algorithm for Radial Basis Function Networks[J].IEEETrans.on Neural Networks,1991,2(2):302-309.
  • 6Sch lkopf B,Smola A J.Learning with Kernels:Support VectorMachines,Regularization,Optimization,and Beyond[M].Cambridge,USA:MIT Press,2002.
  • 7Tipping M E.Sparse Bayesian Learning and the Relevance VectorMachine[J].Journal of Machine Learning Research,2001,1:211-244.
  • 8Chen Sheng,Hong Xia,Harris C J,et al.Sparse Modeling UsingOrthogonal Forward Regression with PRESS Statistic andRegularization[J].IEEE Trans.on Systems,Man and Cybernetics,2004,34(2):898-911.
  • 9Davis G,Mallat S,Zhang Zhifeng.Adaptive Time-frequencyDecompositions[J].Optical Engineering,1994,33(7):2183-2191.
  • 10Likasa A,Vlassis M.The Global K-means Clustering Algorithm[J].Pattern Recognition,2003,36(2):451-461.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部