期刊文献+

基于Contourlet变换的图像压缩感知重构 被引量:5

Image Compressive Sensing Reconstruction Based on Contourlet Transform
下载PDF
导出
摘要 根据图像信号在Contourlet变换域的稀疏特性,分析Contourlet变换的基本原理,提出一种基于Contourlet变换的压缩感知重构方法。针对Contourlet变换的基函数并不严格规范正交、无法构造正交变换矩阵的问题,采用改进梯度投影算法恢复稀疏处理后的系数,在保证图像质量的情况下,实现图像的低速率重构。实验结果表明,该算法的鲁棒性较好。 Based on the sparse characteristic of image signal in Contourlet transform domain,the theory of image Contourlet transform is analyzed,and the image Compressive Sensing(CS) reconstruction method is proposed based on the Contourlet transform.Because the basis of Contourlet transform is not orthogonal strictly and can not construct orthogonal matrix,this paper proposes an image reconstruction method which is based on ameliorative gradient projection algorithm to improve the conventional reconstruct algorithm.The image reconstruction method which is based on ameliorative gradient projection algorithm can realize the high quality image reconstructed with low sampling rate.Experimental result shows that the proposed method has good robustness.
出处 《计算机工程》 CAS CSCD 2012年第12期194-196,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60971100)
关键词 CONTOURLET变换 图像信号 稀疏特性 图像压缩 压缩感知 梯度投影算法 Contourlet transform image signal sparse characteristic image compressive Compressive Sensing(CS) gradient projection algorithm
  • 相关文献

参考文献8

  • 1Han Junwei,Ngan K N.Unsupervised Extraction of VisualAttention Color Images[J].IEEE Transactions on Circuits andSystems for Video Technology,2006,16(1):96-108.
  • 2Do M N,Vetterli M.Contourlets:A New DirectionalMutliresolution Image Representation[C]//Proc.of the 37thAsilomar Conference on Signal,Systems and Computers.Pacific Grove,USA:[s.n.],2002:497-501.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4Candès E.The Restricted Isometry Property and Its Implicationsfor Compressed Sensing[J].Academia des Sciences,2006,346(1):598-592.
  • 5Do M N,Vetterli M.Framing pyramid[J].IEEE Trans.on SignalProcessing,2001,51(9):2329-2342.
  • 6Donoho D L.Compressed Sensing[J].IEEE Trans.on InformationTheory,2006,52(4):1289-1306.
  • 7梁瑞宇,邹采荣,王青云,张学武.基于自适应次梯度投影算法的压缩感知信号重构[J].信号处理,2010,26(12):1883-1889. 被引量:13
  • 8Nocedal J,Wright S J.Numerical Optimization[M].New York,USA:Springer-Verlag,2006.

二级参考文献84

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献718

同被引文献32

  • 1时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 2Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J. Compressive Sampling[C]//Proc. of International Congress of Mathematicians. Madrid, Spain: [s. n.], 2006: 1433-1452.
  • 4Gilbert A C, Guha S, Indyk P, et al. Near-optimal Sparse Fourier Representations via Sampling[C]//Proc. of Annual ACM Symposium on Theory of Computing. Montreal, Canada: Association for Computing Machinery, 2002:152-161.
  • 5Maleki A, Donoho D L. Optimally Tuned Iterative Re- construction Algorithms for Compressed Sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 330-341.
  • 6Hager W W, Park S. The Gradient Projection Method with Exact Line Search[J]. Journal of Global Optimization, 2004, 30(1): 103-118.
  • 7Shanno D F. Conditioning of Quasi-Newton Method for Function Minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 9Dennis J E, Martinez H J, Tapia R A. Convergence Theory for the Structured BFGS Secant Method with an Application to Nonlinear Least Squares[J]. Journal of Optimization and Application, 1989, 61(2): 161-178.
  • 10D. Donoho. Compressed sensing[C]//IEEE Transform on Information Theory, 2006, 52(4): 1289-1306.

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部