期刊文献+

GPS/DR组合导航系统数据融合优化设计 被引量:1

Optimization Design of Data Fusion for GPS/DR Integrated Navigation System
下载PDF
导出
摘要 为降低GPS/DR组合导航系统在复杂导航环境下的定位精度及DR误差累积,提出一种性能较优的数据融合算法。在传统粒子滤波(PF)的基础上,考虑最新观测值的影响,使用基于平方根二阶差分的高斯混合(GM)模型给出粒子滤波的建议分布,采用基于蒙特卡罗的重要性采样和进化再采样方法减轻PF样本退化问题,增强样本多样性。实验结果表明,与PF算法、GMPF算法相比,该设计能提高组合导航系统的综合导航定位性能。 In view that the GPS/DR integrated navigation system in a complex environment has problems such as lower positioning accuracy,error accumulation of the DR and so on,a data fusion algorithm which has better performance is presented.Considering the latest observations of the traditional Particle Filter(PF),the Gaussian Mixture(GM) model based the Square Root of Second-order Divided Difference(SRDD2) is introduced to produce proposal distribution.The importance sampling based on Monte Carlo and the evolution re-sampling are employed respectively that do not reduce sample degradation of the traditional PF but enhance the diversity of the samples.Experimental results show that this design has better comprehensive navigation and positioning performance for integrated navigation system than PF algorithm,GMPF algorithm.
出处 《计算机工程》 CAS CSCD 2012年第12期268-271,共4页 Computer Engineering
基金 广东省自然科学基金资助项目(9451064101003233) 广东省科技计划基金资助项目(2011B010200011) 广东石油化工学院青年创新人才培育基金资助项目(2009YC04)
关键词 GPS/DR组合导航 误差累积 数据融合 平方根二阶差分 粒子滤波 GPS/DR integrated navigation error accumulation data fusion Square Root of Second-order Divided Difference(SRDD2) Particle Filter(PF)
  • 相关文献

参考文献8

  • 1柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 2Georgy J,Noureldin A,Korenberg M J.Modeling the StochasticDrift of a MEMS-based Gyroscope in Gyro/Odometer/GPSIntegrated Navigation[J].IEEE Transactions on IntelligentTransportation Systems,2010,11(4):856-872.
  • 3Tanizaki H,Mariano R S.Nonlinear and Non-Caussian StateSpace Modeling with Monte Carlo Simulations[J].Journal ofEconometrics,1998,83(1/2):263-290.
  • 4张磊,李行善,于劲松,代京.一种基于高斯混合模型粒子滤波的故障预测算法[J].航空学报,2009,30(2):319-324. 被引量:28
  • 5imandl M,Dunǐk J,Král L.Derivative-free Estimation Methods:New Results and Performance Analysis[J].Automatica,2009,45(7):1749-1757.
  • 6Aloísio C D P,Gerson Z.Applying REC Analysis to Ensembles ofSigma-point Kalman Filters[M].London,UK:Springer,2006.
  • 7Vander M R.Sigma-point Kalman Filters for ProbabilisticInference in Dynamic State-space Models[D].Portland,USA:Oregon Health&Science University,2004.
  • 8Oh S,Russell S,Sastry S.Markov Chain Monte Carlo DataAssociation for Multi-target Tracking[J].IEEE Transactions onAutomatic Control,2009,54(3):481-497.

二级参考文献26

共引文献60

同被引文献11

  • 1杨晓云,何恒,施浒立.车辆GPS/DR组合导航系统研究[J].测绘通报,2007(9):1-4. 被引量:12
  • 2卞鸿巍,李安,覃方君,等.现代信息融合技术在组合导航中的应用[M].北京:国防工业出版社,2010.
  • 3GEORGY J, NOURELDIN A, KORENBERG M J. Mod- eling the Stochastic Drift of a MEMS-Based Gyroscope in Gyro/Odometer/GPS Integrated Navigation [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2010,11 (4) :856 -872.
  • 4WANG Fa-sheng,LIN Yue-jin. Improving Particle Filter with A New Sampling Strategy [ C ] // Proceedings of 2009 4th International Conference on Computer Science & Education, 2009 : 407 -412.
  • 5OH S,RUSSELL S,SASTRY S. MAFKOV Chain Monte Carlo Data Association for Multi-Target Tracking [ J ]. IEEE Transactions on Automatic Control, 2009,54 ( 3 ) : 481 -497.
  • 6JULIER S J, UHLMANN J K. Unscented Filtering and Nonlinear Estimation [ J ]. Proceedings of the IEEE,.2004, 92(3) : 401 -422.
  • 7程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:99
  • 8赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述[J].中国惯性技术学报,2009,17(1):46-52. 被引量:74
  • 9刘先省,胡振涛,金勇,杨一平.基于粒子优化的多模型粒子滤波算法[J].电子学报,2010,38(2):301-306. 被引量:21
  • 10宫轶松,归庆明,李保利,周宁.粒子滤波算法在GPS/DR组合导航中的应用[J].测绘科学技术学报,2010,27(1):27-30. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部