期刊文献+

一类带有次线性振动非线性项的两点边值问题无穷多个解的存在性

On the Existence of Solutions for Two-Point Boundary Value Problems with Sublinear Nonlinearity
下载PDF
导出
摘要 利用临界点理论中的极小极大方法获得了下列两点边值问题{ü+u+f(t,u)=0u(0)=u(π)=0两列不同的解,其中f是次线性的. Using the minimax method,we obtain two sequences of distinct solutions,one being the minimum and the other being the saddle point of the associated action functional,of the following boundary value problem ü+u+f(t,u)=0u(0)=u(π)=0 with sublinear nonlinearity.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期19-23,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11071198)
关键词 两点边值问题 非线性项 极小极大方法 two-point boundary value problem sublinear nonlinearity minimax method
  • 相关文献

参考文献5

  • 1OBERSNEL F,OMARI P. Positive Solutions of Elliptic Problems with Locally Oscillating Nonlinearities[J].Journal of Mathematical Analysis and Applications,2006.913-929.
  • 2ANELLO G,CORDARO G. Perturbation from Dirichlet Problem Involving Oscillating Nonlinearities[J].Journal of Differential Equations,2007.80-90.
  • 3CHAO Ji. Perturbation for a p(x)-Laplacian Equation involving Oscillating Nonlinearities in R"[J].Nonlinear Analysis,2008.2393-2402.
  • 4HABETS P,MANASEVICH R,ZANOLIN F. A Nonlinear Boundary Value Problem with Potential Oscillating Around the First Eigenvalue[J].Journal of Differential Equations,1995.428-445.
  • 5MAWHIN J,WILLEM M. Critical Point Theory and Hamiltonian Systems[M].New York:springer-verlag,1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部