期刊文献+

一类四阶Navier边界值问题的高能量解 被引量:1

High Energy Solutions for a Class of Fourth-Order Navier Boundary Value Problems
下载PDF
导出
摘要 利用喷泉定理得到了一类四阶Navier边界值问题Δ2 u+cΔu=f(x,u)x∈Ωu=Δu=0 x∈{Ω无穷多个高能量解的存在性,其中ΩRN(N>4)是一个有界光滑区域. By using the Fountain Theorem,the existence of infinitely many high energy solutions are proved for the fourth-order Navier boundary value problemΔ2u+cΔu=f(x,u) x∈Ωu=Δu=0 x∈Ωwhere Ω RN(N4) is a bounded smooth domain.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期28-31,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11071198)
关键词 四阶Navier边界值问题 喷泉定理 (Ce)条件 fourth-order Navier boundary value problem Fountain Theorem (Ce)condition
  • 相关文献

参考文献8

  • 1LAZER A C,MCKENNA P J. Large-Amplitude Periodic Oscillations in Suspension Bridges:Some New Connections with Nonlinear Analysis[J].SIAM Review,1990,(04):537-578.
  • 2MICHELETTI A M,PISTOIA A. Multiplicity Results for a Fourth-Order Semilinear Elliptic Problem[J].Nonlinear Analysis,1998,(07):895-908.
  • 3MICHELETTI A M,PISTOIA A. Nontrivial Solutions for Some Fourth-Order Semilinear Elliptic Problems[J].Nonlinear Analysis,1998,(04):509-523.
  • 4XU Gui-xiang,ZHANG Ji-hui. Existence Results for Some Fourth-order Nonlinear Elliptic Problems of Local Superlinearity and Sublinearity[J].Journal of Mathematical Analysis and Applications,2003,(02):633-640.
  • 5ZHANG Jian. Infinitly Many Solutions for a Class of Biharmonic Equations Via Variant Foutain Theorems[J].Electronic Journal of Qualitative Theory of Differential Equations,2011,(09):1-14.
  • 6JEANJEAN L. On the Existence of Bounded Palais-Smale Sequences and Application to a Landesman-Lazer Type Problem Set on RN[J].Proceedings of the Royal Society of Edinburgh Section A,1999,(04):787-809.
  • 7LI Gong bao,YANG Cai-yun. The Existence of a Nontrivial Solution to a Nonlinear Elliptic Boundary Value Problem of p-Laplacian Type without the Ambrosetti-Rabinowitz Condition[J].Nonlinear Analysis,2010,(12):4602-4613.
  • 8LIU Shi-bo,LI Shu-jie. Infinitely Many Solutions for a Superlinear Elliptic Equation[J].Acta Math Sinica:Chin Ser,2003,(04):625-630.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部